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Abstract We consider polygonal Markov fields originally introduced by Arak and Sur-
gailis (Probab. Theory Relat. Fields 80:543–579, 1989). Our attention is focused on fields
with nodes of order two, which can be regarded as continuum ensembles of non-intersecting
contours in the plane, sharing a number of features with the two-dimensional Ising model.
We introduce non-homogeneous version of polygonal fields in anisotropic environment. For
these fields we provide a class of new graphical constructions and random dynamics. These
include a generalized dynamic representation, generalized and defective disagreement loop
dynamics as well as a generalized contour birth and death dynamics. Next, we use these con-
structions as tools to obtain new exact results on the geometry of higher order correlations
of polygonal Markov fields in their consistent regime.

Keywords Arak-Surgailis polygonal Markov fields · Graphical construction · Dynamic
representation · Higher order correlation functions · Two-dimensional Ising model

1 Introduction

The first example of a polygonal Markov field has been provided by Arak [1]. Further devel-
opments are due to Arak and Surgailis [2, 3], Surgailis [18] and Arak, Clifford and Surgailis
[4]. The fields with nodes of order 2, or V-shaped nodes for short, which are in the focus of
our attention in this paper, arise as ensembles of self-avoiding closed polygonal contours in
the plane interacting by hard core exclusions, possibly with some further terms entering the
Hamiltonian. Under a particular choice of the Hamiltonian the polygonal fields enjoy strik-
ing properties including consistency (the field constructed in a subdomain D ⊆ D′ ⊆ R

2

coincides with the restriction to D of the field constructed in D′) as well as availability of
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an explicit formula for the partition function and some other numerical characteristics of the
field, see [2]. Under even milder conditions one can guarantee the isometry invariance of
the field as well as the two-dimensional germ-Markov property stating that the conditional
behavior of the field in an open bounded domain depends on the exterior configuration
only through arbitrarily close neighborhoods of the boundary, see ibidem. A particularly
interesting class of processes seem to be length- and area-interacting modifications of con-
sistent fields, which not unexpectedly exhibit many features analogous to those of the two-
dimensional Ising model, including the presence of first order phase transition at low enough
temperatures (Nicholls, [14]; Schreiber, [15]) and low-temperature phase separation phe-
nomenon (Schreiber, [16]). Consistent polygonal fields and their length-interacting modifi-
cations have also interesting statistical applications where they are used as priors in Bayesian
image analysis (Clifford and Nicholls, [6]; Kluszczyński, van Lieshout and Schreiber, [10,
11]; van Lieshout and Schreiber, [12, 17]).

With all the afore-mentioned similarities the polygonal fields enjoy with the Ising model
as well as with more general lattice models used in Bayesian image analysis, one salient
difference is that whereas the latter can be analysed using a rich mixture of combinator-
ial, analytic and geometric techniques, the overwhelming majority of crucial results for the
polygonal Markov fields have been obtained via purely geometric methods usually going
under the guise of graphical constructions. These were first provided by Arak and Surgailis
[2, 3] and Arak, Clifford and Surgailis [4] in the form of the so-called dynamic representa-
tions for consistent polygonal fields. Later, we have introduced disagreement loop dynamics
and contour birth and death representation for broader classes of polygonal fields, see [15].
The purpose of the present paper is twofold.

• First, we introduce a class of new graphical constructions and random dynamics for a
rather general class of non-homogeneous polygonal Markov fields with V-shaped nodes.
These constructions include a generalized dynamic representation, generalized and de-
fective disagreement loop dynamics as well as a generalized contour birth and death dy-
namics.
• Next, we use these constructions as tools to obtain new exact results on the geometry of

higher order correlations of polygonal Markov fields in the consistent regime.

We envision to use the new graphical representations in our current research in progress on
polygonal fields, especially in context of obtaining further exact formulae for higher order
correlations and tentatively also to obtain exact formulae for the free energy of the field
(exact solution) at least in the rectangular case. Due to their intrinsically algorithmic nature
the new constructions will also be used for Bayesian image segmentation purposes, which
is our work in progress in cooperation with van Lieshout, see Schreiber and van Lieshout
[17] for some partial developments in the particular tesselation-based set-up.

The paper is organized as follows. In Sect. 2 below we introduce general non-
homogeneous polygonal fields in non-homogeneous and anisotropic environments. This
is done by imposing a general activity measure on the space of straight lines in the plane,
determining how likely the presence of an edge along a given line is. The usual Ising-type
length interaction is replaced by its anisotropic version there—the energy cost of producing
an edge crossing lines of high activities is higher than the cost of an edge of the same length
crossing only low activity lines. Further, in Sect. 3 general properties of such fields in their
consistent regime are discussed and a non-homogeneous counterpart of the Arak and Sur-
gailis [2] dynamic representation is developed. Next, in Sect. 4 we develop a generalized
dynamic representation for consistent polygonal fields, which allows for a flexible choice
of the field creation dynamics, parametrized by an increasing family of convex compact
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subsets of the field domain. In the subsequent Sect. 5 we employ the generalized dynamic
representation to provide exact factorization statements for higher order correlation func-
tions of polygonal fields in consistent regime. In the next Sect. 6 we introduce variants of the
so-called disagreement loop dynamics for polygonal fields, including the generalized and
defective disagreement loop dynamics. These are then used in Sect. 7 to establish exponen-
tial decay of higher order correlations in the particular set-up of rectangular fields. Finally,
in Sect. 8 we introduce general contour birth and death dynamics for polygonal fields in
low enough temperature, in the spirit of Fernández, Ferrari and Garcia [7–9] and yielding a
perfect simulation scheme directly from the thermodynamic limit.

2 Non-homogeneous Polygonal Markov Fields

For an open bounded convex set D define the family �D of admissible polygonal configu-
rations on D by taking all the finite planar graphs γ in D ∪ ∂D, with straight-line segments
as edges, such that

(P1) the edges of γ do not intersect,
(P2) all the interior vertices of γ (lying in D) are of degree 2,

(P3) all the boundary vertices of γ (lying in ∂D) are of degree 1,

(P4) no two edges of γ are colinear.

In other words, γ consists of a finite number of disjoint polygons, possibly nested and
chopped off by the boundary. Further, for a finite collection (l) = (li)

n
i=1 of straight lines

intersecting D we write �D(l) to denote the family of admissible configurations γ with the
additional properties that γ ⊆⋃n

i=1 li and γ ∩ li is a single interval of a strictly positive
length for each li , i = 1, . . . , n, possibly with some isolated points added.

We shall also consider the subfamily �D|∅ ⊆ �D of empty boundary polygonal configu-
rations in D consisting of those γ ∈ �D which have no boundary vertices. For (l) as above
we put �D|∅(l) := �D(l)∩ �D|∅.

For a Borel subset of A ⊆ R
2 by [[A]] we shall denote the family of all straight lines

hitting A so that in particular [[R2]] stands for the collection of all straight lines in R
2.

We shall also write [[A]] for the family of all linear segments in R
2 hitting A. Consider a

non-negative Borel measure M on the [[R2]] such that

(M1) M([[A]]) <∞ for all bounded Borel A⊆R
2,

(M2) M([[{x}]])= 0 for all x ∈R
2.

Below, the measure M will be interpreted as the activity measure on [[R2]]. Let �M be the
Poisson line process on [[R2]] with intensity measure M and write �M

D for its restriction to
the domain D. Further, define the Hamiltonian LM : �D→R+ given by

LM(γ ) :=
∑

e∈Edges(γ )

M([[e]]), γ ∈ �D. (1)

We argue that the energy function LM should be regarded as an anisotropic environment-
specific version of the length functional. Indeed, interpreting the activity M(dl) of a line
l hitting an edge e ∈ Edges(γ ) as the likelihood of a new edge being created along l in-
tersecting and hence fracturing the edge e in γ, we note that, roughly speaking, the value
of M([[e]]) determines how likely the edge e is to be fractured by another edge present in
the environment. In other words, LM(γ ) determines how difficult it is to create the whole
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graph γ ∈ �D without fractures in the environment M—note that due to the anisotropy of
the environment there may be graphs of a higher (lower) total edge length than γ and yet of
lower (higher) energy and thus easier (more difficult) to create and to keep unfractured due
to the lack (presence) of high activity lines likely to fracture their edges.

With the above notation, for β ∈ R further referred to as the inverse temperature (for
mathematical convenience we admit also the unphysical negative values of inverse tem-
peratures), we define the polygonal field AM;β

D in D with activity measure M to be the
Gibbsian modification of the process induced on �D by �M

D , with the Hamiltonian LM at
inverse temperature β, that is to say

P
(
AM;β

D ∈G
) :=

E
∑

γ∈�D(�M
D

)∩G exp(−βLM(γ ))

E
∑

γ∈�D(�M
D

) exp(−βLM(γ ))
(2)

for all sets G ⊆ �D Borel measurable with respect to, say, the usual Hausdorff distance
topology. Note that this definition can be rewritten as

P(AM;β
D ∈ dγ )∝ exp(−βLM(γ ))

∏

e∈Edges(γ )

M(dl[e]), γ ∈ �D, (3)

where l[e] is the straight line extending e. In other words, the probability of having
AM;β

D ∈ dγ is proportional to the Boltzmann factor exp(−βLM(γ )) times the product of
edge activities M(dl[e]), e ∈ Edges(γ ). Observe also that this construction should be re-
garded as a specific version of the general polygonal model given in (2.11) in [2]. The
finiteness of the partition function

ZM;β
D := E

∑

γ∈�D(�M
D

)

exp
(−βLM(γ )

)
<∞ (4)

for all β ∈ R is not difficult to verify, see (32) below. We shall also consider the empty
boundary version of the above construction, with AM;β

D|∅ arising in law as AM;β
D conditioned

on staying within �D|∅, that is to say not containing boundary vertices. It is easily seen
that alternatively AM;β

D|∅ can be defined by rewriting (2) above with �D replaced with �D|∅
throughout. The corresponding partition function ZM;β

D|∅ is always finite as well, see (31)
below.

In the sequel we also consider the thermodynamic limits for such fields, which take
their values in the space � := �R2 of whole-plane admissible configurations, with obvious
meaning of this notation. Note in this context that �R2 = �R2|∅.

As a particular case of this general construction we shall consider rectangular fields.
Slightly abusing the terminology, by a rectangular field we shall mean a polygonal field
given by (2) and (3) whose activity measure M concentrates on translates of two non-
parallel straight lines—in other words, its edges can follow precisely two different direc-
tions. Clearly, upon a non-singular affine transform such a rectangular field can be made
into a process where all angles between edges are straight, whence the name. Assuming
with no loss of generality that the two admissible directions for the edges of the field are
parallel to the coordinate axes, we can further transform each rectangular field into the stan-
dard rectangular field where the measure M is given by M(dl) being dh if l is a parallel
translate of a coordinate axe by distance h, h ∈R, and 0 otherwise. Indeed, putting

F↔(x) :=
{
M((0, x] × {0}), if x ≥ 0,

−M((x,0] × {0}), otherwise
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and

F
(y) :=
{
M({0} × (0, y]), if y ≥ 0,

−M({0} × (y,0]), otherwise,

it is readily verified that the map R
2 � (x, y) �→ (F↔(x),F
(y)) does define such a transfor-

mation. Note that both F↔ and F
 are finite by (M1) and continuous by (M2). Although in
general this transformation is not a bijection, it is easily seen to be bijective on the support
of AM, with the inverse defined by (s, t) �→ (sup{x, F↔(x)≤ s}, sup{y, F
(y)≤ t}).

Even though in general we admit all β ∈R, in this paper we shall mainly study two prin-
cipal temperature regions. The first one is the consistent regime corresponding to β = 1 and
introduced in Sect. 3—we shall argue that this particular choice of temperature parameter
places us in the context of a non-homogeneous version of Arak-Surgailis [2] construction
for the so-called consistent polygonal fields, thus ensuring the availability of an appropriate
dynamic representation for our process in terms of equilibrium evolution of one-dimensional
particle systems tracing the boundaries of the field in two-dimensional space-time, as dis-
cussed in detail in Sect. 3.1 below, see also [2]. The afore-mentioned consistency property,
arising as a consequence of the dynamic representation and further discussed in Sect. 3.2,
means here that for each open bounded convex D ⊆D′ ⊂R

2 the field AM;1 :=AM;1
D coin-

cides in law with AM
D′ :=AM;1

D′ ∩D, thus allowing for a direct construction of the infinite
volume process (thermodynamic limit) AM :=AM;1 on the whole R

2. A number of further
properties can be concluded from the dynamic representation for β = 1, including the ex-
plicit knowledge of the partition function Z

M;1
D as made precise in Theorem 2 below. The

consistent fields are the main object of study in Sects. 3, 4, 5 and 7, and play a crucial role
also in Sect. 6.

The second regime in the focus of our interest is the low temperature region (large pos-
itive β) where long range point-to-point correlations are present, giving rise to the sponta-
neous magnetization phenomenon, see Corollary 6 in Sect. 8 and the discussion below it. All
disagreement loop dynamics developed in Sect. 6 of this paper admit their versions work-
ing for the low temperature region. Moreover, in Sect. 8 we provide another important tool
characterizing the behavior of our model in this regime, namely a contour birth and death
graphical construction in the spirit of Fernández, Ferrari and Garcia [7–9] put together with
our random walk representation for the so-called free contour measure specific to the model.
Applying this graphical construction we are able to establish the existence of the thermo-
dynamic limit for AM;β as well as certain mixing-type results for general activity measures
satisfying (27) in analogy with Sect. 4 in [15], see Corollary 5.

As a by-product of our considerations both in the consistent and low temperature regimes
we obtain efficient exact simulation algorithms for AM;β, both in finite windows and di-
rectly from the thermodynamic limit.

3 The Consistent Regime

As mentioned above, we show here that the choice β = 1 puts us in the so-called consistent
regime of the polygonal field, where it enjoys remarkable features arising as consequences
of a (non-homogeneous) version of the dynamic representation developed by Arak and Sur-
gailis [2], see Sect. 4 there. In Sect. 3.1 below, we give the non-homogeneous dynamic
representation and further in Sect. 3.2 we discuss its consequences.
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3.1 Consistent Fields and Their Dynamic Representation

To describe the dynamic representation, we interpret the open convex domain D as a set of
space-time points (t, y) ∈D, with t referred to as the time coordinate and with y standing
for the spatial coordinate of a particle at the time t. In this language, a straight line segment
in D stands for a piece of the space-time trajectory of a freely moving particle. In the sequel
by a particle we shall understand a function t �→ yt assigning to each time moment t the
spatial location yt of the particle at the time t. Moreover, by the trajectory of a particle we
shall mean the graph of this function, i.e. the set of points (t, yt ). The particle trajectories
considered in this paper are piecewise linear and hence almost everywhere differentiable.
Clearly, in the language being introduced, the derivative of yt at t corresponds to the current
velocity of the particle at the time t. Below, for notational convenience we shall omit the
subscript t writing y instead of yt . For a straight line l non-parallel to the spatial axis and
crossing the domain D we define in the obvious way its entry point to D, in(l,D) ∈ ∂D and
its exit point out(l,D) ∈ ∂D.

On R
2 we construct the birth measure 〈〈M〉〉 given for each Borel A⊆R

2 by

〈〈M〉〉(A) := 1

2
M×M({(l1, l2), l1 ∩ l2 ⊂A})

= E card{{l1, l2} ⊆�M, l1 �= l2, l1 ∩ l2 ⊂A}. (5)

Note in this context that M ×M({(l, l), l ∈ [[R2]]}) = 0 by (M2). Likewise, on ∂D we
construct the boundary birth measure 〈〈M; ∂D〉〉 given for each Borel B ⊆ ∂D by

〈〈M; ∂D〉〉(B) :=M({l, in(l,D) ∈ B})= E card{l ∈�M, in(l,D) ∈ B}. (6)

We choose the space-time birth coordinates for the new particles according to a Poisson
point process in D with intensity measure 〈〈M〉〉 (interior birth sites) superposed with a
Poisson point process on the boundary (boundary birth sites) with the intensity measure
〈〈M; ∂D〉〉. Each interior birth site x ∈D emits two particles, moving with initial velocities
v′ and v′′ chosen according to the joint distribution

θM
x (dv′, dv′′) :=M×M({(l1, l2), l1 ∩ l2 ∈ dx, v[l1] ∈ dv′, v[l2] ∈ dv′′})

2〈〈M〉〉(dx)
, (7)

where v[l] is the velocity of a particle whose space-time trajectory is represented by the
straight line l. Note that this is equivalent to choosing the directions of the straight lines
representing the space-time trajectories of the emitted particles according to the distribution
of the typical angle between two lines of �M at x, that is to say the angle arising by
conditioning �M on containing two lines intersecting at dx, see also Sects. 3 and 4 in [2]
and the references therein. In other words, (7) implies that the interior birth at l1 ∩ l2 in D

of two particles moving along straight lines l1 and l2 respectively happens with probability
M(dl1)M(dl2). Each boundary birth site x ∈ ∂D yields one particle with initial speed v

determined according to the distribution θM;∂
x (dv) identified by requiring that the direction

of the line entering D at x and representing the space-time trajectory of the emitted particle
be chosen according to the distribution of a straight line l ∈�M conditioned on the event
{x = in(l,D)}, that is to say

θM;∂
x (dv) :=M({l, in(l,D) ∈ dx, v[l] ∈ dv})

〈〈M; ∂D〉〉(dx)
. (8)
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Again, this means that the boundary birth at l∩ ∂D of a particle moving along a straight line
l occurs with probability M(dl).

All the particles evolve independently in time according to the following rules.

(E1) Between the critical moments listed below each particle moves freely with constant
velocity so that dy = vdt,

(E2) When a particle touches the boundary ∂D, it dies,
(E3) In case of a collision of two particles (equal spatial coordinates y at some moment t

with (t, y) ∈D), both of them die,
(E4) The time evolution of the velocity vt of an individual particle is given by the following

pure-jump inhomogeneous Markov process: denoting by lt the straight line extending
the present segment of the space-time trajectory of the particle at time t so that vt =
v[lt ], we have

P(lt+dt ∈ dl′ | lt = l)= 1{l′∈[[ l[t,t+dt] ]]}〈〈M〉〉(dl′)

with l[t,t+dt] standing for the segment along l between time moments t and t + dt.

The evolution rule (E4) can be interpreted as follows: in the course of its movement along
a short line segment l[t,t+dt] a particle turns and starts moving along another straight line
l′ ∈ [[l[t,t+dt]]] with probability 〈〈M〉〉(dl′) which agrees with the interpretation of M as the
line activity measure as discussed above.

The following theorem shows that the polygonal field obtained in the course of the above
dynamic construction is in fact AM

D =AM;1
D , in analogy with the results of Arak and Sur-

gailis [2], Sect. 4, for homogeneous fields.

Theorem 1 The polygonal field traced by the particle system constructed above coincides
in distribution with AM

D =AM;1
D . Moreover, we have

ZM;1
D = exp(〈〈M〉〉(D)). (9)

Proof We pick some γ ∈ �D and calculate the probability that the outcome of the above
dynamic construction falls into dγ. To this end, we note that:

• Each edge e ∈ Edges(γ ) with initial vertex (lower time coordinate) lying on ∂D con-
tributes to the considered probability the factor M(dl[e]) (boundary birth of a particle
tracing the edge) times exp(−M([[e]])) (no velocity updates along e),
• Each of the two edges e1, e2 ∈ Edges(γ ) steming from a common interior birth site

l[e1] ∩ l[e2] yields the factor M(dl[ei]), i = 1, 2 (coming from the birth probability)
times exp(−M([[ei]])) (no velocity updates along ei ),
• Each of the edges e ∈ Edges(γ ) arising due to a velocity update of a particle yields the fac-

tor M(dl[e]) (velocity update probability) times exp(−M(dl[e])) (no velocity updates
along e),
• The absence of interior birth sites in D \ γ yields the factor exp(−〈〈M〉〉(D)),

• Finally, the absence of boundary birth sites at ∂D \ γ yields the additional factor
exp(−〈〈M; ∂D〉〉(D)) = exp(−M([[D]])).
Putting these observations together we conclude that the probability element of γ being

traced by the particle system is

exp(−LM(γ ))

exp(〈〈M〉〉(D))

∏
e∈Edges(γ ) M(dl[e])
exp(−M([[D]])) = exp(−LM(γ ))

exp(〈〈M〉〉(D))
dP(γ ∈ �D(�M)),
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where the event {γ ∈ �D(�)M} is easily seen to correspond to the situation where the collec-
tion of edge-extending lines {l[e], e ∈ Edges(γ )} coincides with the collection of lines de-
termined by �M

D . This shows that the field traced by the particles coincides in law with AM
D

and that (9) holds, thus completing the proof of the theorem. �

3.2 Conclusions from the Dynamic Representation

The crucial property of polygonal fields AM
(·) for β = 1 is their consistency stated in Theo-

rem 2 below and established using the dynamic representation from Theorem 1 in analogy
with Arak and Surgailis [2]. This is where the name consistent regime comes from. Another
important feature of AM

(·) is the explicit knowledge of its linear sections, see Theorem 2,
which can be further used to obtain information about the first and second order correlation
structure of the field, see Theorem 4 and Corollaries 1, 2 and 4.

Theorem 2 The polygonal field AM
D enjoys the following properties:

Consistency: For bounded open convex D′ ⊆D ⊆ R
2 the field AM

D ∩D′ coincides in law
with AM

D′ . This allows us to construct the whole plane extension of the process AM such
that for each bounded open convex D ⊆R

2 the field AM
D coincides in law with AM ∩D.

Linear sections: For a straight line l in R
2 the collection of intersection points and inter-

section directions of l with the edges of the polygonal field AM coincide in law with the
corresponding collection for the Poisson line process �M.

Proof To establish the Consistency property, choose a bounded open convex set D ⊆ R
2

and a straight line l intersecting D and define D′ to be the set of points of D lying to the left
from l (lower time coordinates). Clearly then, from the dynamic representation Theorem 1
we conclude the Consistency statement for the so chosen D and D′. Noting that the dynamic
representation is equally available upon rotating the space-time coordinate system we see
that the Consistency holds as well upon cutting off the part of the set D lying to the left
of l. This means however that the consistency holds upon cutting off pieces of the original
set with arbitrary straight lines—a repetitive use of this procedure and a possible passage to
the limit allows us to carve from D its arbitrary convex subset. This proves the Consistency
claim. To establish the Linear sections statement pick a straight line l and choose the space-
time coordinate system so that l coincides with its spatial axis. The Linear sections claim
follows now from the form of the boundary birth mechanism in the dynamic representation
in view of the Consistency property. �

4 Generalized Dynamic Representation for Consistent Fields

The dynamic construction of consistent polygonal fields, originating in the homogeneous
set-up from Arak and Surgailis [2] and discussed in Sect. 3 above, can be regarded as re-
vealing increasing portions of the polygonal field in the course of the time flow. Under
this interpretation, the portion of a polygonal field in a bounded open convex domain D

uncovered by time t is precisely its intersection with Dt = D̄ ∩ (−∞, t]×R+. The idea un-
derlying our generalized version of dynamic representation developed in the present section
is to replace the above family Dt by some other time-increasing family of subsets of D, also
denoted Dt in the sequel, eventually covering the whole D, and to try to provide a natural
construction of the polygonal field being gradually uncovered on the growing domain Dt



Non-homogeneous Polygonal Markov Fields in the Plane 677

in the course of the time flow. We shall always assume that Dt be convex for otherwise we
would have to deal with situations where two or more disconnected parts of an edge of the
field have been revealed which leads to unwanted and cumbersome dependencies along the
segments connecting these parts. Taking this into account and having formal convenience in
mind we impose the following natural assumptions on D and Dt, t ∈ [0,1],
(D1) (Dt)t∈[0,1] is a strictly increasing family of compact convex subsets of D̄ =D ∪ ∂D.

(D2) D0 is a single point x in D̄ =D ∪ ∂D.

(D3) D1 coincides with D̄.

(D4) The family (Dt)t∈[0,1] enjoys the property that M({l, ∃t∈[0,1] card(l ∩ ∂Dt) > 2})= 0,

in particular D̄ itself satisfies M({l, card(l ∩ ∂D) > 2})= 0.

(D5) Dt is continuous in the usual Hausdorff metric on compacts.

Under these conditions, for M-almost each l ∈ [[D]] the intersection l∩Dτl consists of pre-
cisely one point A(l), where τl = inf{t ∈ [0,1], Dt ∩ l �= ∅}. The point A(l) will be referred
to as the anchor point for l, this induces the anchor mapping A : [[D]] → D. Consider
now the following dynamics in time t ∈ [0,1], with all updates given by the rules below
performed independently of each other.

(GE:Initialize) Begin with empty field at time 0,

(GE1) Between critical moments listed below, during the time interval [t, t + dt] the un-
folding field edges in Dt reaching ∂Dt extend straight to Dt+dt \Dt,

(GE2) When a field edge hits the boundary ∂D, it stops growing in this direction (recall that
M-almost everywhere the intersection of a line with ∂D consists of at most two points),

(GE3) When two unfolding field edges intersect in Dt+dt \Dt, they are not extended any
further beyond the intersection point (stop growing in the direction marked by the intersec-
tion point),

(GE4) A field edge extending along l ∈ [[Dt ]] updates its direction during [t, t + dt] and
starts unfolding along l′ ∈ [[l[t,t+dt]]], extending away from the anchor point A(l′), with
probability M(dl′), where l[t,t+dt] := l ∩ (Dt+dt \Dt). Directional updates of this type are
all performed independently,

(GE:LineBirth) Whenever the anchor point A(l) of a line l falls into Dt+dt \Dt, the line l is
born at the time t at its anchor point with probability M(dl), whereupon it begins extend-
ing in both directions with the growth of Dt (recall that l is M-almost always tangential to
∂Dt here),

(GE:VertexBirth) For each intersection point of lines l1 and l2 falling into Dt+dt \Dt, the
pair of field lines l1 and l2 is born at l1 ∩ l2 with probability M(dl1)M(dl2), whereupon
both lines begin unfolding in the directions away from their respective anchor points A(l1)

and A(l2).

Observe that the evolution rule (GE:VertexBirth) means simply that pairs of lines are born
at birth sites distributed according to a Poisson point process in D with intensity measure
〈〈M〉〉, in analogy to the standard dynamic representation in Sect. 3.1. The essential differ-
ence though is that here the pairs of lines emitted from a birth site extend away from their
respective anchor points rather than always in the direction determined by a single time axis.
Further, the line birth events given by (GE:LineBirth) replace the boundary birth events in
the standard dynamic representation. It is also worth noting that if we choose the family Dt

so that Dt := D̄ ∩ (−∞, (1− t)xmin + txmax] × R+, where xmin and xmax are the minimal
and maximal x-coordinates of a point in D (assume that D̄ contains exactly one point with
x-coordinate xmin and that M assigns zero mass to the set of vertical lines), the generalized
dynamic representation (GE) coincides with the standard Arak and Surgailis one determined
by rules (E1-4) in Sect. 3.1 above, and we have A(l)= in(l,D).



678 T. Schreiber

In analogy with the corresponding result for the usual dynamic construction, as estab-
lished in the proof of Theorem 1, we show that the field resulting from the above (GE)
construction does coincide in law with AM

D .

Theorem 3 The random contour ensemble resulting from the above construction (GE) co-
incides in law with AM

D .

Proof The proof is very similar to that of Theorem 1. We pick some γ ∈ �D and calculate
the probability that the outcome of the above dynamic construction falls into dγ. To this
end, we note that:

• Each edge e ∈ Edges(γ ) containing the anchor point A(l[e]) and hence resulting from a
line birth event due to the rule (GE:LineBirth), contributes to the considered probability
the factor M(dl[e]) (line birth probability for l[e]) times exp(−M([[e]])) (no directional
updates along e),
• Each of the two edges e1, e2 ∈ Edges(γ ) steming from a common interior birth vertex

l[e1] ∩ l[e2] yields the factor M(dl[ei]), i = 1,2, (coming from the vertex birth prob-
ability due to the rule (GE:VertexBirth)) times exp(−M([[ei]])) (no directional updates
along ei ),
• Each of the edges e ∈ Edges(γ ) arising due to a directional update in (GE4) yields the

factor M(dl[e]) (directional update probability) times exp(−M(dl[e])) (no directional
updates along e),
• The absence of interior birth sites in D \ γ yields the factor of exp(−〈〈M〉〉(D)),

• Finally, the absence of line birth events for all lines in [[D]] except for the finite collection
{l[e], e ∈ Edges(γ )} yields the additional factor exp(−M([[D]])).

Putting these observations together we conclude that the probability element of γ resulting
from the generalized construction above is

exp(−LM(γ ))

exp(〈〈M〉〉(D))

∏
e∈Edges(γ ) M(dl[e])
exp(−M([[D]])) = exp(−LM(γ ))

exp(〈〈M〉〉(D))
dP(γ ∈ �D(�M))

and thus the field obtained by this construction coincides in law with AM
D as required. This

completes the proof of the theorem. �

5 Correlations in the Consistent Regime

In the present section we use the dynamic construction and its generalized version to de-
scribe the correlation structure of the consistent field AM. Due to the polygonal nature of
the considered field the natural object of our interest are the edge correlations

σM[dl1, x1; . . . ;dlk, xk] := P
(∀k

i=1 ∃e∈Edges(AM) πli (xi) ∈ e, l[e] ∈ dli
)
, (10)

where l1, . . . , lk are straight lines and πli is the orthogonal projection on li . In almost all cases
below we shall be interested in correlations with xi ∈ li , in which case σM[dl1, x1; . . . ;
dlk, xk] can be interpreted as the probability element that the polygonal field AM passes
through points xi in the directions determined by the respective lines li , i = 1, . . . , k. For
general xi, not necessarily lying on li , the k-fold correlation σM[dl1, x1; . . . ;dlk, xk] is the
probability that the polygonal field passes through points πli (xi) in the directions determined
by the respective lines li , i = 1, . . . , k.
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5.1 First and Second Order Edge Correlations

The first and second order edge correlations are easily determined using the Linear sections
statement of Theorem 2 concluded from the standard dynamic representation.

Theorem 4 We have for x ∈ l

σM[dl, x] =M(dl)

and, for x1 ∈ l1, x2 ∈ l2,

σM[dl1, x1;dl2, x2] =
{
M(dl1)M(dl2), if l1 �= l2,

exp(−2M([[x1x2]]))M(dl), if l1 = l2,

where x1x2 is the segment joining x1 to x2.

Proof The statement for σM[dl, x] and σM[dl1, x1;dl2, x2], l1 �= l2, is a direct conse-
quence of the Linear sections part of Theorem 2 and of the properties of the Poisson line
process �M. To find σM[dl, x1;dl, x2] for x1, x2 ∈ l note that in order to have an edge e of
the field passing through both x1 and x2 along l, we have to ensure that

• There is e ∈ Edges(AM) such that l[e] ∈ dl and x1, which happens with probability
M(dl) in view of Linear sections in Theorem 2,
• There are no other edges of the field crossing e between x1 and x2, which happens with

probability exp(−2M([[x1x2]])). Indeed, to see it choose the spatial axis in the standard
dynamic representation in Sect. 3.1 very close to l (not exactly l to keep the velocity of
the particle tracing e finite though very large) and observe that e can be crossed by
– space-time trajectories of particles coming from the past, which happens with proba-

bility 1− exp(−M([[x1x2]]))[1+ o(1)] by the Linear sections property,
– edges arising due to velocity updates along x1x2, which happens with probability 1−

exp(−M([[x1x2]]))[1+ o(1)] by the dynamic rule (E4).
Since the velocity update events in (E4) are independent of the past particle configuration,
letting the spatial axis approach l we obtain the required conclusion.

Combining the factors listed above we obtain the required formula for σM[dl, x1;dl, x2],
thus completing the proof of the Theorem. �

5.2 Higher Order Edge Correlations for General Activity Measures

To describe the higher order correlation structure of the field AM we need the full
power of the more flexible generalized dynamic representation. Consider a collection
(l1, x1), (l2, x2), . . . , (lk, xk), k ≥ 1, of pairwise different lines li and points xi with xi ∈ li
and xi /∈ lj for j �= i. Such collections are said to be in general position below and such
assumption will be imposed an all collections (li , xi) considered in this subsection, often
without a further mention. Also, throughout this subsection we always assume for formal
convenience that all xi , i = 1, . . . , n, are contained in a bounded open convex set D, playing
the usual role of the field domain. Clearly, the particular choice of D is irrelevant due to the
consistency of the field AM.

We say that the edge correlations of the field AM factorize on a collection (li , xi)
k
i=1

if σM[dl1, x1; . . . ;dlk, xk] coincides with the product
∏k

i=1 σM[dli , xi]. Moreover, we say
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that the collective factorization of correlations holds for a family (li , xi)
k
i=1 if the corre-

lations factorize for (li , xi)
k
i=1 and all its sub-collections. In view of Theorem 4 (li , xi)

k
i=1

collectively factorizes iff

σM[dli1 , xi1; . . . ;dlim, xim ] =
m∏

j=1

M(dlij ) (11)

for all sub-collections (lij , xij )
m
i=1.

General collective factorization problem and precedence graphs Our main objective in
the present subsection is to find general conditions characterizing collections (l̄, x̄) in
general position enjoying the collective factorization property. To see what may be plau-
sible answers to this question let us make the following basic observations very help-
ful in interpreting the geometry of the higher order edge correlations. For a collection
(l̄, x̄) = (l1, x1; . . . ; lk, xk), xi ∈ li , in general position by �(l̄, x̄) we shall mean the fam-
ily of admissible polygonal configurations γ in the plane consisting of k edges e1, . . . , ek

such that ei lies on li and contains xi for all i = 1, . . . , k. Looking at the structure of the
family �(l̄, x̄) is closely related to the following natural problem which marks its presence
in various domains ranging from kid games to studies on human and computer vision, see
[5] and the references therein: given the collection (l̄, x̄)= (li , xi)

k
i=1 draw a family of closed

curves (here a polygonal configuration) such that each point xi lies on one of the curves and
the direction of the curve at xi is determined by li . Clearly, the solution to this problem is
non-unique in general, yet if we require in addition that the configuration we draw belong to
�(l̄, x̄), that is to say we may only draw over the lines li and on each of these lines we have
to draw precisely one segment of non-zero length, then it is often the case that �(l̄, x̄) is a
singleton. Now, assume that all points xi as well as the intersection points yi,j for li and lj
lie very close to each other, say they are all contained in a disk of very small radius r, then
it follows from (2) and (3) combined with the consistency property of the field that

σM[dl1, x1; . . . ;dlk, xk] =N(l̄, x̄)M(dl1) · · ·M(dlk)(1+ or(1)), (12)

where N(l̄, x̄) is the cardinality of �(l̄, x̄). Indeed, to see it note that the Boltzmann weight
exp(−LM(·)) tends to 1 as r → 0. Thus, the factorization holds in small r asymptotics
precisely when �(l̄, x̄) is a singleton. As will be discussed in the sequel, there are many
collections for which N(l̄, x̄) = 0 or N(l̄, x̄) > 1. In particular, it is not the case that the
factorization holds for all collections in general position. Neither can it be hoped though that
the formula (12) holds in general non-asymptotic regime: as we shall show in Theorem 11 in
Sect. 7 in the particular case of rectangular fields, when the distances between xi ’s get large,
the correlations converge exponentially fast to the product, that is to say the polygonal field
exhibits exponential decay of dependencies. To conclude these considerations, we say that
(li , xi)

k
i=1 enjoys collective factorization on all scales iff (αli , αxi)

k
i=1 factorizes collectively

for each α > 0, where by (αl, αx) we understand the re-scaled version of (l, x) with scaling
factor α. Then the above discussion shows that

Lemma 1 For a collection (l̄, x̄)= (li , xi)
k
i=1 in general position a necessary condition to

enjoy collective factorization on all scales is that N(l̄, x̄)= 1 and N(l̄′, x̄ ′)= 1 for all non-
empty sub-collections (l̄′, x̄ ′) of (l̄, x̄).

To reformulate this condition in more tangible terms, we build for each family (li , xi)
k
i=1

its precedence graph G[l1, x1; . . . ; lk, xk] as follows. We split each li at xi into two
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half-lines both oriented in the directions away from xi. This creates a directed graph
G[l1, x1; . . . ; lk, xk] whose vertices are the generating points xi and the intersection points
yi,j of respective pairs of lines li , lj . As we shall see below, the name precedence graph
comes from its relationship to the order in which the points of

⋃k

i=1 li are revealed in the
course of a suitable instance of the generalized graphical construction. For now, we claim
that

Lemma 2 For a collection (l̄, x̄) = (li , xi)
k
i=1 in general position the following conditions

are equivalent

1. N(l̄, x̄)= 1 and N(l̄′, x̄ ′)= 1 for all non-empty sub-collections of (l̄, x̄),

2. The precedence graph G[l1, x1; . . . ; lk, xk] is acyclic.

Proof To show that the first condition implies the second one note that if the precedence
graph contains a cycle of length m built by (li1 , xi1; . . . ; lim , xim), then for the sub-collection
(l̄′, x̄ ′)= (lij , xij )

m
j=1 we have N(l̄′, x̄ ′)= 0 if m is odd and N(l̄′, x̄ ′)= 2 if m is even.

To prove the inverse implication assume that the precedence graph G[l1, x1; . . . ; lk, xk]
contains no cycles and observe that this induces a partial ordering on

⋃k

i=1 li in which
the xi ’s are minimal points, each xi first on its corresponding line li and with the remain-
ing points on li ordered according to the natural linear orderings directed away from xi

on the two half-lines. This will be referred to as the structural ordering for the collection
(li , xi)

k
i=1 in the sequel. Consider the following incremental construction of a graph belong-

ing to �(l̄, x̄), where at each step we obtain a collection of k segments ιi ⊆ li , i = 1, . . . , k

with non-intersecting interiors but possibly sharing endpoints and possibly degenerated to
xi ’s, eventually yielding the entire graph under construction.

1. begin with ιi := {xi}, i = 1, . . . , k,

2. choose an intersection point yi,j which:
(a) belongs to neither ιi nor ιj and hence to neither of the remaining segments ιl .

(b) enjoys the property that extending both ιi and ιj to contain yi,j creates no T-shaped
or X-shaped nodes (vertices of order three or four respectively), which is equivalent
to both ιi and ιj having their endpoints pointing towards yi,j not shared with any
other segment ιl . (Such endpoints will be referred to as loose ends below. Note that
by definition of our construction procedure the only possible loose end on ιi is xi.)

(c) is minimal with the above two properties.
with possible ties broken in an arbitrary way,

3. extend both segments ιi and ιj to contain yi,j —this action will be referred to as adding
yi,j to the graph for short in the sequel of this argument,

4. return to 2. unless no more yi,j ’s can be added,
5. whenever a segment ιl of the constructed graph ends with a loose node, that is to say a

vertex of order one, extend this segment to the half-line in the direction of the node.

In other words, we initialize our graph under construction with the set of generating points
{x1, . . . , xk} whereupon we let it grow along the lines li , adding subsequent intersection
points yi,j in the order determined by the structural ordering whenever this does not vio-
late the usual constraints imposed on a polygonal configuration, and discarding those yi,j ’s
whose addition would violate these constraints. It is easily seen that this procedure yields
in a finite number of steps a graph belonging to �(l̄, x̄), thus in particular �(l̄, x̄) �= ∅ and
N(l̄, x̄)≥ 1. To show that N(l̄, x̄)≤ 1 note that in fact all graphs in �(l̄, x̄) can be obtained
by the above procedure. Indeed, this is seen inductively. First, all xi ’s have to belong to
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such a graph. Second, whenever a graph in �(l̄, x̄) contains some configuration of ιi ’s as
its (sub)segments and some of these ιi ’s have loose ends xi ’s, each of such ιi ’s has to be
extended, either up to intersection with the extension of another segment or to the entire
half-line if such an intersection is not available. This is because no loose ends can be present
in the final graph and because we cannot hope that the potential loose end xi on ιi could be
possibly reached by another edge ιj , j �= i, since xi /∈ lj , j �= i. This means that at least
one intersection point yi,j as in 2.(a, b, c) has to be added to the graph as in 2. Consequently,
two different graphs in �(l̄, x̄) could only arise in the course of two distinct instances of
the above procedure, with different choices of minimal points yi,j in step 2. We argue that
the so constructed graphs necessarily coincide though. To see it let us make the following
observations

• If at a certain stage of the construction some intersection point yi,j becomes admissible for
2.(a, b, c), there is no way to make it inadmissible whatever choices be made in the sequel
of the construction save for adding yi,j to the graph. Indeed, to make yi,j inadmissible
in the sequel of the construction we would have to close either ιi or ιj by intersecting its
extension with an extension of some other ιl before ιi or ιj hits yi,j , which is not possible
by the minimality of yi,j in 2.(a, b, c).
• If at a certain stage of the construction some intersection point yi,j becomes admissible for

2.(a ,b, c), there is no way to make it inadmissible by adding some other intersection points
in the prequel of the construction in agreement with the rule 2. (without removing those
already present though). Indeed, to make yi,j inadmissible in this way we would have to
have added some other intersection point y on ιi or ιj prior to the considered construction
stage, but if this were possible this point y would have to reach its admissibility before yi,j

and in view the previous observation there would be no way to make it inadmissible before
yi,j reaches its admissibility, which would contradict the minimality of yi,j in 2.(a, b, c)
at the moment of becoming admissible.

Consequently, regardless of any particular sequence of choices in a given instance of our
construction, the points admissible for 2.(a, b, c) in the very first step of the construction
(call them the first generation) eventually have to be added in view of the first observation
above. Next, by the first and second observation above, all points which become admissible
upon adding just the first generation (call them the second generation) also have to be added
at some stage of the construction regardless of the particular sequence of choices made.
Proceeding further this way we conclude inductively that the so-defined generations of all
orders will eventually be added to the graph. However such generation-wise addition of
intersection points (plus possible extensions to half-lines at the end of the procedure) is also
an instance of our incremental construction and it yields a valid graph belonging to �(l̄, x̄)

which, in view of the above discussion, enjoys the property of being contained in any other
graph obtained in any instance of our construction. It remains to observe that a valid graph
in �(l̄, x̄) cannot be further extended by our construction. All this means that the results of
all possible instances of our construction coincide and the order in which the points yi,j are
considered in 2. is irrelevant. This way, we have shown that N(l̄, x̄)= 1 as required. �

We ask whether the necessary precedence graph acyclicity condition stated in combined
Lemmas 1 and 2 is also a sufficient condition for collective factorization of correlations
(on all scales). Below we are going to show that the answer to this question is positive
for rectangular fields, see Sect. 5.3 and Theorem 6 there. For general fields we were only
able to establish collective edge factorization under a somewhat stronger sufficient condition
though, see Theorem 5, and we do not know at present if this condition can be weakened.
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General sufficient condition for collective factorization We proceed with the general case
first. To this end, we note that the generalized dynamic construction with its (GE:LineBirth)
rule allows us to conclude:

Lemma 3 Assume that (li , xi)
k
i=1 is a collection of pairwise distinct lines and points in

general position and such that l1 does not hit the convex hull conv({x2, . . . , xk}). Then

σM[dl1, x1; . . . ;dlk, xk] =M(dl1)σ
M[dl2, x2; . . . ;dlk, xk].

Indeed, under the assumptions of the corollary, by standard geometry it is always possi-
ble to construct an increasing family (Dt), t ∈ [0,1], of convex compacts satisfying rules
(D1-5) as in Sect. 4 and such that Dt covers the whole of conv({x2, . . . , xk}) before hitting l1
and that A(l1)= x1, that is to say x1 is the first point of l1 hit by Dt. This yields the required
statement by the consistency of the field and by the (GE:LineBirth) rule. This way of think-
ing suggests a natural sufficient condition for collective factorization to hold under general
activity measures, namely that there exist an increasing family (Dt), t ∈ [0,1], of convex
compacts as in Sect. 4 and such that xi =A(li) for all 1≤ i ≤ k, that is to say xi is the point
at which li is first hit by Dt. However, the so formulated collective factorization condition is
rather untractable, therefore we look for its equivalent reformulation in more tangible terms.
To this end we augment the precedence graph G[l1, x1; . . . ; lk, xk] as follows. For each two
lines li , lj intersecting at some yi,j we note that li and lj divide the plane into four regions,
one with both xi and xj on its boundary, two with either xi or xj , and finally one, termed
the trap region, with neither. Now, if some xm falls into such a trap region, it is easily seen
that for each family Dt such that A(li)= xi, i = 1, . . . , k, we must have yij hit by Dt prior
to xm. Indeed, if at a certain time Dt contains xm, then if by that time it contains either of
the points xi or xj , it has to intersect both li and lj and thus contain both xi, xj and hence
also yij by convexity. On the other hand if Dt hits xm before hitting any of xi and xj then
we cannot have simultaneously A(li)= xi and A(lj )= xj . Taking this into account we add
in G[l1, x1; . . . ; lk, xk] a directed trap edge from yij to xm for each i, j,m as above. Denote
the resulting augmented directed graph by G+[l1, x1; . . . ; lk, xk]. It is important to observe
that, as follows by its construction and the above discussion, the orientation of edges in this
graph indicates the order in which its vertices are hit by the sought for increasing family Dt,

should it exist. Consequently, the acyclicity of the augmented precedence graph is a neces-
sary condition for the existence of such Dt. In the proof of the following crucial theorem we
show that it is also a sufficient condition.

Theorem 5 Assume that (li , xi)
k
i=1 is a collection of pairwise distinct lines and points in

general position such that the augmented precedence graph G+[l1, x1; . . . ; lk, xk] is acyclic.
Then (li , xi)

k
i=1 admits collective factorization of correlations on all scales.

Proof In context of the discussion above and in view of the generalized graphical construc-
tion and its (GE:LineBirth) rule as used in Lemma 3, it suffices to show that there exists an
increasing family Dt such that A(li) = xi for all i = 1, . . . , k. Now, to establish the exis-
tence of such a family it is enough to know that having G+[l1, x1; . . . ; lk, xk] acyclic implies
the existence of a permutation (si)

k
i=1 of indices such that lsi+1 does not hit the convex hull

conv({xs1 , . . . , xsi }), i = 1, . . . , k−1. Indeed, the family Dt is then easily constructed by in-
duction in k : it starts growing from xs1 whereupon it hits the consecutive points xs2 , xs3 , . . . ,

and since lsk+1 is disjoint with conv({xs1 , . . . , xsk }), the family Dt can be chosen so that it
does not hit lsk+1 until it reaches all previous lines lsi , i ≤ k, and so that A(lsi )= xsi for i ≤ k
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(by induction hypothesis) and then A(lsk+1)= xsk+1 (again by disjointness of lsk+1 with the
convex hull of preceding xsi ’s). This can be equivalently interpreted as iterative application
of Lemma 3.

To proceed, we use induction in k to show that whenever G+[. . .] is acyclic, the required
permutation ensuring the disjointness of lines with convex hulls of sets of preceding points
exists. To this end, observe first that our statement trivializes for k = 1. Next, choose a col-
lection (l1, x1; . . . ; lk, xk) and note that if there exists a line in the collection which does not
hit the convex hull generated by all the remaining points then by Lemma 3 we can resort
to the inductive hypothesis for the collection with the line removed. Consequently, we only
have to show that if the collection (l1, x1; . . . ; lk, xk) is such that each line li hits the convex
hull conv({xj , j �= i}) then G+[l1, x1; . . . ; lk, xk] contains a cycle. Again resorting to induc-
tive argument if needed, we may assume without loss of generality that (l1, x1; . . . ; lk, xk) is
minimal with this property, that is to say it does not contain a proper subcollection such that
each its line hits the convex hull generated by the remaining points. This minimality assump-
tion implies that all xi ’s are extreme points (vertices) of the convex hull conv({x1, . . . , xk}),
for otherwise removing a non-extreme point we would obtain a subcollection enjoying the
considered property. For formal convenience we let the vertices xi be ordered clockwise
along the boundary of the convex hull and we interpret the indices modulo k, that is to
say xk+1 = x1 etc. By minimality, should we remove a vertex xi from the collection, there
exists xj , j �= i, such that lj does not hit conv({xm, m �= i, j}). However, by the assumed
properties, the only possible choices for such j are j = i + ε for ε = +1 or ε = −1 and
the line lj has to cross the segment xixi−ε. Consequently, each vertex xi is cut off from the
convex hull conv({x1, . . . , xk}) by a line passing through its neighboring vertex and crossing
the opposite neighboring edge. The choices of ε for different vertices are not independent,
because if we choose to use li to cut off xi+1 then xi−1 has to be cut off by li−2. Thus, if the
number k of vertices is odd, this is easily checked to imply that either for all i = 1, . . . , k the
line li passes through the segment xixi+1 or for all i = 1, . . . , k the line li passes through the
segment xixi−1. In both cases this generates a cycle of order k in G+[l1, x1; . . . ; lk, xk]. On
the other hand, if k is even, apart from the above two options generating a cycle of order k

we have another possibility where the collection of vertices splits into k/2 pairs of neighbors
xi, xi+1 such that li crosses xi+1xi+2 and li+1 crosses xi−1xi. In this case, however, each such
pair of neighbors is contained in the trap region generated by any other one and hence we
get a cycle of order 4 consisting of some xi, yi,i+1, xj , yj,j+1, where yi,i+1 is the intersection
point of li and li+1 and likewise for yj,j+1. In either situation G+[l1, x1; . . . ; lk, xk] contains
a cycle as required. This completes the proof of Theorem 5. �

5.3 Full Characterization of Collective Factorization for Rectangular Fields

As we already have mentioned above, in the particular case of rectangular Markov fields our
knowledge is more complete than in the general setting. In fact, we are able to show that the
necessary precedence graph acyclicity condition for collective factorization on all scales, as
stated in combined Lemmas 1 and 2, becomes in this context a sufficient condition as well.
This is made precise in the following theorem.

Theorem 6 Assume that the field AM is rectangular and let (li , xi)
k
i=1, xi ∈ li , be a collec-

tion of pairwise distinct lines and points in general position. Then the following are equiva-
lent:
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1. The precedence graph G[l1, x1; . . . ; lk, xk] is acyclic.
2. The collection (li , xi) admits collective factorization of correlations on all scales.

Proof The implication from 2. to 1. follows directly from Lemmas 1 and 2. Thus, it only
remains to establish the implication from 1. to 2. To this end, we make first the following
observation, which is also of its own intrinsic interest in the context of rectangular fields.

Given two non-parallel lines l and l′ on whose parallel translates the activity measure M
is concentrated, we say that a set D ⊆ R

2 is {l, l′}-convex if for any two points x, y ∈ D

lying on a common translate of l or l′ the entire segment xy is contained in D. Clearly,
{l, l′}-convexity is a much weaker concept than the usual convexity, in particular a {l, l′}-
convex set does not even have to be connected. We shall write conv{l,l′}(A) for the {l, l′}-
convex hull of A⊆ R

2, that is to say the smallest {l, l′}-convex set containing A. Now, the
crucial observation is that in the context of the generalized dynamic representation in Sect. 4
specialized for the considered rectangular field, the convexity assumption imposed on the
growing family (Dt) there can be relaxed to the {l, l′}-convexity here without any further
modifications of the theory. Moreover, instead of having the initial set D0 consist of a single
point, we can now let it consist of any positive finite number of points under the {l, l′}-
convexity requirement. Indeed, the proof of Theorem 3 carries over verbatim under these
relaxed conditions on (Dt) and the {l, l′}-convexity of (Dt) ensures that the intersections of
the field lines with (Dt) are always connected. It is essential to note at this point that the
convexity requirement cannot be lifted for the target domain D though. The point is that the
consistency statement in Theorem 2 does essentially require convexity of the domain of the
field in its proof and, consequently, a rectangular field constructed in some non-convex but
{l, l′}-convex set may fail to coincide with the corresponding restriction of the whole-plane
consistent field. This phenomenon is closely related to the rather unintuitive fact that there
exist pairs of compacts D1 ⊆ D2 ⊆ R

2 consisting of a {l, l′}-convex set D1 and a convex
set D2 with the property that D1 cannot be extended to D2 through a Hausdorff-continuous
growing family of {l, l′}-convex compacts, in sharp contrast to the case of convex sets where
such an extension is always possible. These issues are not discussed in further detail here as
falling beyond the scope of the present article, yet they are a subject of our active research in
progress because we believe that the knowledge of the geometry of such non-extensible sets
and their corresponding defective fields may shed some further light upon the higher-order
correlation structure of AM.

To proceed, recall that the vertex set of the precedence graph G[l1, x1; . . . ; lk, xk] consists
of the generating points xi ’s and of yi,j ’s arising as the intersection points of the corre-
sponding li and lj . Since the precedence graph is acyclic, there exists a complete ordering
of its vertices compatible with the structural partial order induced by directions of its edges.
In addition, in view of the minimality of xi ’s in the structural order, we can assume that
no y·,·-vertex (intersection vertex) precedes an x·-vertex (generating vertex) in the consid-
ered complete ordering, that is to say the ordered collection of vertices can be written as
(x1, . . . , xk;v1, . . . , vm) where v1, . . . , vm are all y·,·-vertices of G[l1, x1; . . . ; lk, xk]. Say that
a vertex u of the precedence graph is a direct predecessor of another vertex w if there is a
directed edge from u to w containing no other vertices of the graph, which amounts to direct
precedence of u over w in the structural order on the vertices of the precedence graph. Note
that y·,·-vertices have precisely two direct predecessors each, whereas x·-vertices have no
predecessors. We construct inductively a growing family (D̃t ) of {l, l′}-convex sets in R

2 by
putting D̃t := conv{l,l′}D◦t , where

• We put D◦0 = {x1, . . . , xk}.
• For t = i/m, 1≤ i ≤m we set D◦t = {x1, . . . , xk, v1, . . . , vi}.



686 T. Schreiber

• For t ∈ ((i−1)/m, i/m), 1≤ i ≤m we let w1,w2 be the direct predecessors of the vertex
vi (note that w1,w2 ∈D◦t for t ≤ (i − 1)/m by the construction) and we define D◦t as the
union of
– D◦(i−1)/m,

– the point w1 +m(t − (i − 1)/m)(vi −w1),

– the point w2 +m(t − (i − 1)/m)(vi −w2).

In other words, initially the set D̃0 consists of {x1, . . . , xk}. Since the collection (li , xi) is in
general position, we clearly have D̃0 = conv{l,l′}D◦0 = conv{l,l′}{x1, . . . , xk} = {x1, . . . , xk}.
Next, the intersection points vi are subsequently added to the set D◦t , in time intervals of
length 1/m. With the intersection points added, the {l, l′}-convex hull of the increasing
vertex collection does no more coincide with the collection itself. The time between the mo-
ments of y·,·-vertex additions is therefore used to interpolate the family (D◦t ), thus keeping
the growth of its {l, l′}-convex hull (D̃t ) Hausdorff continuous. Indeed, the growth of (D◦t )
is Hausdorff continuous by definition and it is easily seen that each new point in D̃t+dt \ D̃t

arises as a shift of a point in D◦t+dt \D◦t along a translate of either l or l′ and, consequently,
D̃t+dt \ D̃t is a union of two rectangles of infinitesimal width O(dt) built on two possibly
degenerated segments parallel to l and l′ respectively. Note that in general this would not be
the case if vi ’s were not ordered compatibly with the structural ordering—adding a single
new intersection point to D◦t might then possibly result in some further intersection points,
not yet present in D◦t , falling into its {l, l′}-convex hull D̃t , which might in its turn produce
an extra non-degenarate rectangle in D̃t thus violating the Hausdorff continuity. The impor-
tance of imposing on vi ’s an ordering compatible with the structural order for (li , xi)

k
i=1 is

that it ensures that the intersection points vi in D̃t are precisely those present in D◦t with no
extras, that is to say for t ∈ [i/m, (i + 1)/m)∩ [0,1], i = 0,1, . . . ,m, we have

{x1, . . . , xk, v1, . . . , vm} ∩ D̃t = {x1, . . . , xk, v1, . . . , vi} ∩D◦t = {x1, . . . , xk, v1, . . . , vi}.
In particular, the time order in which the points of the precedence graph G[l1, x1; . . . ; lk, xk]
show up in D̃t is compatible with the structural ordering for the collection (li , xi)

k
i=1. Ob-

serve as well that D̃1 is a convex set (a rectangle in fact) containing all xi ’s for i = 1, . . . , k.

Moreover, even though (D̃t ) does not satisfy the condition (D4) in Sect. 4, it can be easily
modified by local smoothing to yield an increasing family (Dt) of {l, l′}-convex sets satis-
fying the conditions (D1), (D3), (D4), (D5) in Sect. 4 and enjoying the property (inherited
from (D̃t )) that A(li)= xi where A(·) is the anchor mapping induced by Dt. Furthermore,
by the same local smoothing modification D1 can be taken convex and containing all xi ’s
in its interior. In view of the discussion on the particular form of the generalized graphical
construction for rectangular fields and taking into account the (GE:LineBirth) rule of this
construction we conclude the required collective factorization of correlations on all scales,
thus completing the proof of Theorem 6. �

It should be emphasized at this point that the above argument apparently cannot be re-
peated for more general fields. Indeed, with all directions allowed the condition (D2) cannot
be lifted and D0 has to be a singleton which makes our construction above break down.
Moreover, in case when only a finite number of, but more than two, directions are allowed,
the construction breaks down as well—even though a discussion parallel to the above can be
provided based on the concept of convexity in the directions of the field, which does again
allow to relax the offending condition (D2), we may in general loose the Hausdorff continu-
ity of D̃t at the moments when two parts of D̃t growing in two different directions become
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for the first time connectable along some other direction of the field (never to happen when
there are only two directions allowed).

5.4 Integral Correlation Measures

With the knowledge of the correlation structure of the field AM as provided so far in this
section, we are now in a position to determine natural integral correlation measures for
the field. To this end, for a bounded open convex D ⊆ R

2 and for a planar graph in D

(a collection of edges, not necessarily in �D) we construct its first order directional measure

D(1)[γ ] :=
∑

e∈Edges(γ )

�(e)δl[e] (13)

with �(·) denoting the usual Euclidean length and with δl[e] standing for the unit mass at
l[e] ∈ [[D]]. The so-defined D(1)(γ ) is a finite purely atomic measure on [[D]]. Likewise,
we consider the second order directional measure on [[D]] × [[D]] given by

D(2)[γ ] :=
∑

e1∈Edges(γ )

∑

e2∈Edges(γ )

�(e1)�(e2)δ(l[e1],l[e2]). (14)

We shall use the expectations of these measures with γ drawn from AM
D as natural charac-

teristics of the directional nature of the field. To this end, we put

�M
D := ED(1)[AM

D ]. (15)

Write also

�M
D := ED(2)[AM

D ] −�M ⊗�M (16)

where⊗ denotes the measure producting operation. Note that �M
D has its natural interpreta-

tion as the directional covariance measure. Below we explicitly determine both the first and
second order directional measures for AM.

Corollary 1 For l ∈ [[D]] we have

�M
D (dl)= �(l ∩D)M(dl).

Proof For each l ∈ [[D]] we have

�M(dl)=
∫

l∩D
σM[dl, x]�(dx)

where � is the length element. Our statement follows now by Theorem 4. �

Corollary 2 For l1, l2 ∈ [[D]] we have

�M
D (dl1, dl2)=

{∫
l∩D

∫
l∩D exp(−2M([[xy]]))�(dx)�(dy)M(dl), if l1 = l2 = l,

0, otherwise.
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Proof For l1, l2 ∈ [[D]] we have

�M
D (dl1, dl2)=

∫

l1∩D

∫

l2∩D
σM[dl1, x1;dl2, x2]�(dx2)�(dx1)−�M

D (dl1)�
M
D (dl2).

Our assertion follows now by Theorem 4. �

5.5 Alternative Correlation Measures

In addition to the events that there exist field lines passing through given points in given
directions as considered in the definition of σM[. . .] above, one can also study events that
there exist field angles with vertices at given points and with their arms extending along
given half-lines. In formal terms, we put

ςM[d∠1; . . . ;d∠k] := dP
(∀k

i=1∠k ∈Angles(AM)
)
, (17)

where Angles(γ ), γ ∈ �, denotes the collection of convex angles in the admissible polyg-
onal graph γ and where ∠i := ∠[�li , �l′i], i = 1, . . . , k, stands for the convex angle between
two directed half-lines �li and �l′i outgoing from the vertex of the angle and directed away
from the vertex. It should be noted at this point for formal completeness that the concave an-
gles arising as the complements of the convex angles of γ are not included into Angles(γ ).

In analogy to Lemma 3, a similar factorization result for the probabilities of such events can
be concluded from the generalized dynamic representation.

Corollary 3 Assume the collection ∠1, . . . ,∠k is such that the vertices xi of ∠i are all
different and such that the interior of the convex angle ∠1 is disjoint with the convex hull
conv({x2, . . . , xk}). Then

ςM[d∠1; . . . ;d∠k] =M(dl1)M(dl′1)ς
M[d∠2; . . . ;d∠k].

Proof Indeed, under the assumptions of the corollary the increasing family Dt in the gener-
alized dynamic representation in Sect. 4 can be chosen so that it first hits all x2, . . . , xk and
finally it reaches x1 before hitting any other point of ∠1. Our claim follows now by the rule
(GE:VertexBirth) of the generalized representation. �

Suppose now that we assign alternating labels +1 and −1 to regions separated by the
contours of the field which thus become interfaces between +1 and −1 phases. This gives
rise to two possible label assignments in R

2 and we pick any of them with probability 1/2.

Write [AM]x for the label assigned by AM at x ∈R
2. Then for two points x, y ∈R

2 we can
define the two-point label-correlation function

ρM
x,y := E[AM]x[AM]y −E[AM]xE[AM]y . (18)

It is easily seen that, writing nx,y := card(xy ∩ AM) for the number of edges of the field
AM crossing the segment xy,

ρM
x,y = P(nx,y is even)− P(nx,y is odd).

Recalling from the Linear sections statement of Theorem 2 that nx,y is Poisson with para-
meter M([[xy]]) with xy denoting the segment joining x to y, we conclude that
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Corollary 4 We have

ρM
x,y = exp(−M([[xy]])).

Roughly speaking, this shows that for regularly behaved activity measures M the two-
point label-correlation functions of the field AM exhibit exponential decay with the distance
between x and y which places the inverse temperature β = 1 corresponding to the consistent
regime in the high temperature regime for polygonal fields, above the phase transition point.

6 Disagreement Loop Death and Birth Dynamics

In this section we discuss a random dynamics on the space �D of admissible polygonal
configurations which leaves the law of the consistent field AM

D invariant, with D standing
as usual for an open bounded convex set in R

2. We also provide a modification of this
dynamics which can be used for Monte Carlo simulation of AM;β

D for all β ∈ R. We build
upon [15] in our presentation of the standard dynamics based on an important concept of a
disagreement loop.

6.1 Standard Disagreement Loop Dynamics for Consistent Regime

To proceed we place ourselves within the context of the standard dynamic representation
as given in Sect. 3.1 and suppose that we observe a particular realization γ ∈ �D of the
polygonal field AM

D and that we modify the configuration by adding an extra birth site x0

to the existing collection of birth sites for γ, while keeping the evolution rules (E1-4) for
all the particles, including the two newly added ones if x0 ∈D and the single newly added
one if x0 ∈ ∂D. Denote the resulting new (random) polygonal configuration by γ ⊕ x0.

A simple yet crucial observation is that for x0 ∈D the symmetric difference γ �[γ ⊕ x0] is
almost surely a single loop (a closed polygonal curve), possibly self-intersecting and possi-
bly chopped off by the boundary. Indeed, this is seen as follows. The leftmost point of the
loop γ �[γ ⊕x0] is of course x0. Each of the two new particles p1,p2 emitted from x0 move
independently, according to (E1-4), each giving rise to a disagreement path. The initial seg-
ments of such a disagreement path correspond to the movement of a particle, say p1, before
its annihilation in the first collision. If this is a collision with the boundary, the disagreement
path gets chopped off and terminates there. If this is a collision with a segment of the orig-
inal configuration γ corresponding to a certain old particle p3, the new particle p1 dies but
the disagreement path continues along the part of the trajectory of p3 which is contained in
γ but not in γ ⊕ x0. At some further moment p3 dies itself in γ, touching the boundary or
killing another particle p4 in γ. In the second case, however, this collision only happens for
γ and not for γ ⊕ x0 so the particle p4 survives (for some time) in γ ⊕ x0 yielding a further
connected portion of the disagreement path initiated by p1, which is contained in γ ⊕x0 but
not in γ etc. A recursive continuation of this construction shows that the disagreement path
initiated by p1 consists alternately of connected polygonal subpaths contained in [γ ⊕x0]\γ
(call these creation phase subpaths) and in γ \ [γ ⊕ x0] (call these annihilation phase sub-
paths). Note that this disagreement path is self-avoiding and, in fact, it can be represented
as the graph of some piecewise linear function t �→ y(t). Clearly, the same applies for the
disagreement path initiated by p2. An important observation is that whenever two creation
phase or two annihilation phase subpaths of the two disagreement paths hit each other, both
disagreement paths die at this point and the disagreement loop closes (as opposed to inter-
sections of segments of different phases which do not have this effect). Obviously, if the
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disagreement loop does not close in the above way, it gets eventually chopped off by the
boundary. We shall write �⊕[x0;γ ] = γ �[γ ⊕ x0] to denote the (random) disagreement
loop constructed above. It remains to consider the case x0 ∈ ∂D, which is much simpler
because there is only one particle emitted and so �⊕[x0;γ ] = γ �[γ ⊕ x0] is a single self-
avoiding polygonal path eventually chopped off by the boundary. We shall often abuse the
language calling such a disagreement path �⊕[x0;γ ] a (degenerate) disagreement loop as
well.

Likewise, a disagreement loop (or path) arises if we remove one birth site x0 from the
collection of birth sites of an admissible polygonal configuration γ ∈ �D, while keeping
the evolution rules for all the remaining particles. We write γ � x0 for the configuration
obtained from γ by removing x0 from the list of the birth sites, while the resulting random
disagreement loop (or path) is denoted by ��[x0;γ ] so that ��[x0;γ ] = γ �[γ � x0]. We
refer the reader to Sect. 2.1 in [15] for further discussion.

With the above terminology we are in a position to describe a random dynamics on the
configuration space �D, which leaves invariant the law of the consistent polygonal process
AM

D . Particular care is needed, however, to distinguish between the notion of time consid-
ered in the dynamic representation of the field as well as throughout the construction of the
disagreement loops above, and the notion of time to be introduced for the random dynamics
on �D constructed below. To make this distinction clear we shall refer to the former as to the
representation time (r-time for short) and shall reserve for it the notation t, while the latter
will be called the simulation time (s-time for short) and will be consequently denoted by s

in the sequel.
Consider the following pure jump birth and death type Markovian dynamics on �D, with

γs = γ D
s standing for the current configuration

(DL:birth) With intensity 〈〈M〉〉(dx)ds for x ∈D and with intensity 〈〈M; ∂D〉〉(dx)ds for
x ∈ ∂D set γs+ds := γs ⊕ x,

(DL:death) For each birth site x in γs with intensity ds set γs+ds := γs � x.

If none of the above updates occurs we keep γs+ds = γs. It is convenient to perceive the
above dynamics in terms of generating random disagreement loops λ and setting γs+ds :=
γs�λ, with the loops of the type �⊕[·, ·] corresponding to the rule DL:birth and ��[·, ·] to
the rule DL:death.

As a direct consequence of the dynamic representation of the consistent field AM
D we

obtain

Theorem 7 The distribution of the polygonal field AM
D is the unique invariant law of the

dynamics given by DL:birth and DL:death. The resulting s-time stationary process is re-
versible. Moreover, for any initial distribution of γ0 the laws of the polygonal fields γs con-
verge in variational distance to the law of AM

D as s→∞.

The uniqueness and convergence statements in the above theorem require a short justi-
fication. They both follow by the observation that, in finite volume, regardless of the initial
state, the process γs spends a non-null fraction of time in the empty state (no polygonal
contours). Indeed, this observation allows us to conclude the required uniqueness and con-
vergence by a standard coupling argument, e.g. along the lines of the proof of Theorem 1.2
in [13].

6.2 Standard Disagreement Loop Dynamics for General Temperatures

Below, we show that the laws of the Gibbs-modified polygonal fields AM;β
D , β ∈ R, arise

as the unique invariant distributions for appropriate modifications of the reference dynam-
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ics DL:birth, DL:death. The main change is that the birth and death updates are no more
performed unconditionally, they pass an acceptance test instead and are accepted with cer-
tain state-dependent probabilities whereas upon failure of the acceptance test the update is
discarded. Consider the following dynamics

(DL:birth[β]) With intensity 〈〈M〉〉(dx)ds for x ∈D and with intensity 〈〈M; ∂D〉〉(dx)ds

for x ∈ ∂D do

• put δ := γs ⊕ x,

• accept δ with probability exp(−[β − 1](LM(δ)− LM(γs))) if LM(δ) > LM(γs) and
with probability 1 otherwise,
• if accepted, set γs+ds := δ, otherwise keep γs+ds := γs.

(DL:death[β]) For each birth site x in γs with intensity ds do

• put δ := γs � x,

• accept δ with probability exp(−[β − 1](LM(δ)− LM(γs))) if LM(δ) > LM(γs) and
with probability 1 otherwise,
• if accepted, set γs+ds := δ, otherwise keep γs+ds := γs.

In analogy with its original reference form DL:birth, DL:death, the above dynamics should
be thought of as generating random disagreement loops λ and setting γs+ds := γ �λ pro-
vided λ passes the acceptance test. The following theorem justifies the above construction.

Theorem 8 For each β ∈ R the law of the polygonal process AM;β
D is the unique invari-

ant distribution of the dynamics DL:birth[β], DL:death[β]. The resulting s-time stationary
process is reversible. For any initial distribution of γ0 the laws of the polygonal fields γs

converge in variational distance to the law of AM;β
D as s→∞.

Indeed, the invariance follows by a straightforward check of usual detailed balance con-
ditions whereas the convergence and uniqueness statements are verified as in Theorem 7.

6.3 Generalized Disagreement Loop Dynamics

Even though the above disagreement loop dynamics in its standard version has been con-
structed using the standard dynamic representation of Sect. 3.1, exactly the same can be
made for the generalized dynamic representation of Sect. 4. As easily verified, this also
leads to disagreement loop and path creation and annihilation, the only difference being
that boundary birth events in the standard set-up are replaced by general line birth events
in context of the generalized dynamic construction. Vertex creation and annihilation yield
disagreement loops whereas line creation and annihilation yield disagreement paths. Thus,
the DL:birth and DL:death moves get replaced by

(GenDL:birth) With intensity 〈〈M〉〉(dx)ds for x ∈D set γs+ds := γs ⊕ x. With intensity
M(dl)ds for l ∈ [[D]] set γs+ds := γs ⊕ l, where γs ⊕ l arises from γs by letting l be born
at its anchor point A(l) and making it extend thereupon according to the evolution rules of
the generalized construction, which gives rise to a disagreement path.

(GenDL:death) For each point birth site x in γs with intensity ds set γs+ds := γs � x. For
each line birth site A(l) of a line l in γs, with intensity ds set γs+ds := γs � l, where
again γs � l arises from γs by killing at A(l) the field line l of γs, which gives rise to a
disagreement path.

In full analogy with Theorem 7 we have
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Theorem 9 The distribution of the polygonal field AM
D is the unique invariant law of the

dynamics given by GenDL:birth and GenDL:death. The resulting s-time stationary process
is reversible. Moreover, for any initial distribution of γ0 the laws of the polygonal fields γs

converge in variational distance to the law of AM
D as s→∞.

The modification GenDL[β] of the GenDL dynamics for general β ∈ R goes along ex-
actly the same lines as the construction of DL[β] from DL, by introducing suitable ac-
ceptance tests, and hence we omit the standard details here. Obviously, the corresponding
version of Theorem 8 holds in full analogy. Clearly, the so-defined dynamics depends then
on the choice of the increasing family Dt. Note that hybrid dynamics can also be considered,
switching between different choices of Dt in the course of the simulation time s, which is
sometimes beneficial e.g. in image processing applications, see [17].

6.4 Defective Disagreement Loop Dynamics

To conclude the discussion of disagreement loop dynamics we introduce one more variant
thereof, which we call defective dynamics. The idea stems from the observation that the
standard dynamic construction in Sect. 3.1 and its generalized version in Sect. 4 rely re-
spectively on the time axis direction and on the anchor mapping A : [[D]] →D to decide
in which of the two possible directions to proceed along a new line each time a directional
update occurs and a new edge is to be created. This decision mechanism is then inherited by
the disagreement loop dynamics where the current direction of an unfolding disagreement
loop changes in the following situations:

1. upon a directional update during a creation phase,
2. when a directional update is present on the path being erased during an annihilation

phase,
3. when switching between creation and annihilation phases.

In all these situations the choice of the direction to follow along the new line is always the
same: forward in time in the standard case and away from the corresponding anchor point in
the generalized case. In certain contexts there may be good reasons to try to overcome these
restrictions and to allow for more general directional decision strategies even at the cost
of obtaining disagreement loop dynamics which do not correspond to any well-defined dy-
namic representations. One of such situations arises when studying the correlation functions
of the polygonal field as defined in Sect. 5 and we shall indeed use the defective construction
to provide below a proof of exponential correlation decay for rectangular fields, see Sect. 7.
Another setting where more general directional decision strategies may be of use are image
processing applications of polygonal fields, see [17].

The idea underlying the defective disagreement loop dynamics is hence to keep the cru-
cial feature of the above DL and GenDL dynamics, being that the symmetric difference
between a configuration and its update is always a disagreement loop algorithmically con-
structible in the course of alternating creation and annihilation phases, but to give up the
requirement that the disagreement loop generating mechanism be determined by a dynamic
representation. Such an approach makes this disagreement loop generating mechanism the
core of the construction. In our construction of the defective dynamics we shall assume that
upon each directional update along an unfolding disagreement loop, the decision on which
of the two possible directions to choose along the new line is taken as a deterministic func-
tion of the current portion of the disagreement subpath built by the time of the update. To
put it in formal terms, assume we are given a measurable directional decision mapping/rule
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φ = φD assigning to each connected non-closed but possibly self-intersecting polygonal
path λ contained in the domain D of the field and to a line l ∈ [[D]] passing through one of
the two ends of λ, one of the two possible directions along l. In our dynamics below φ(λ, l)

will be used to determine the direction in which the disagreement path λ is to extend upon
a directional update into l. For a polygonal configuration γ ∈ �D, a straight line l ∈ [[D]]
assumed not to be an extension of an edge of γ and a point x ∈ l \ γ we construct the con-
figuration γ ⊕ (l, x) ∈ �D, interpreted as the result of adding to γ a linear germ (l, x) born
at x and initially evolving along l � x or, in other words, creating a new field line for γ at
x. The construction goes as follows. We add a line birth site for l at x at the time t = 0
whereupon we let the newly born linear germ extend in both directions along l away from
x, say with constant unit speed for definiteness although other options are also possible as
discussed below. While extending, the resulting new edge is subject to directional updates:
for each line l′ which the growing edge crosses the probability that a directional update oc-
curs and a new growth direction along l′ is assumed is M(dl′)—if this happens at some
time moment t, the new direction along l′ is always chosen according to the directional
decision rule φ(λt , l

′) and the growth continues with constant unit speed, with λt standing
for the current path constructed by the time t. At some point, the resulting polygonal path
may hit the boundary of D or an existing edge e of γ, in which case it stops growing in
this direction. Upon a collision with an edge we switch from creation mode to annihilation
mode and proceed (say, again with constant unit speed) from the collision point along the
edge e in the direction indicated by φ(λt , l[e]), erasing this part of the edge. This continues
till we reach the boundary ∂D or another edge e′ of γ. In the latter case, if the edge e′ ex-
tends in the direction agreeing with φ(λt , l[e′]) from the collision point, we proceed along e′
and keep erasing it. If, however, the edge e′ extends from the collision point in the direction
opposite to φ(λt , l[e′]), we switch back to the creation mode and start extending e′ in the
direction indicated by φ(λt , l[e′]). We continue this procedure for both branches of the lin-
ear germ emitted from the line birth site (l, x). Both branches give rise to directed polygonal
disagreement paths constituting the symmetric difference γ � (γ ⊕ (l, x)), both consisting
of alternating polygonal subpaths corresponding to creation and annihilation stages of the
construction and respectively referred to as creation phase and annihilation phase subpaths
in the sequel. The procedure terminates when both branches get killed in collision with ∂D.

It may be useful to observe that the requirement that both branches of the disagreement loop
grow with constant unit speed has no effect on the final shape of individual branches but it
determines the precedence of their intersection points, should they meet. Thus, in principle,
the unit growth speed may be alternatively replaced by other natural options such as letting
the right (left) branch grow first till it reaches the boundary and to let the left (right) branch
grow thereupon, or even admitting different growth speeds for both branches or speeds de-
pending on the current form of the disagreement loop under construction. Below we shall al-
ways assume one of these options is chosen and fixed, under each such choice the discussion
below remains valid. The co-existence of two disagreement branches obliges us to impose
one more rule on the construction of γ ⊕(l, x): if a creation phase subpath of one branch hits
a creation phase subpath of another branch, both branches get killed at this point, referred to
as the cut-off point below, their continuation possibly already constructed gets chopped off
and we consider the disagreement loop complete thus terminating the construction; likewise
for two annihilation phase subpaths of different branches colliding. If two subpaths of dif-
ferent phases coming from different branches meet, nothing happens though. Note that there
can be several such cut-off points and the disagreement loop construction terminates at the
first cut-off point with respect to the ordering imposed by the time flow—consequently the
choice of a particular growth speed protocol as discussed above may affect the choice of the
loop-closing cut-off point and hence also the final shape of the disagreement loop.
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So far, this construction looks very similar to the construction of the disagreement paths
and loops in DL and GenDL above. There is one crucial difference though: it may hap-
pen here that a self-intersection occurs along one branch of the disagreement path being
constructed—this could never have happened in the disagreement loop dynamics DL and
GenDL corresponding to dynamic representations because of the temporal ordering along
branches of disagreement paths/loops there, and this is the price we pay here for the freedom
of choice of the directional decision mapping φ(·, ·). If such a self-intersection occurs past
the cut-off point, we just ignore it. If it happens before the cut-off, we are in trouble though.
A look at the description of the disagreement path construction procedure here readily shows
that the presence of such a self-intersection and hence of a cycle along a single disagreement
branch before the cut-off means

• either that at this point we start discarding the changes previously introduced by erasing
segments previously created (meeting of two creation phases),
• or that the ⊕(l, x) operation is not reversible (creation phase edge hits annihilation

phase subpath preceding it along the disagreement branch) in that the disagreement loop
γ�(γ ⊕ (l, x)), even though it can be used for the transition γ → (γ ⊕ (l, x)), is no more
a valid disagreement loop upon switching the creation and annihilation phases and thus
cannot be used for the reverse transition (γ ⊕ (l, x))→ γ.

The remaining two situations: intersection of two annihilation subpaths or an annihilation
edge hitting a creation subpath preceding it along the disagreement branch, cannot occur in
our construction as this would either imply the existence of a node of order higher than 2 in
the original configuration γ (in the first case) or stand in contradiction to the disagreement
loop construction rules (in the second case). To prevent the above pathologies from happen-
ing we say that the construction of the disagreement loop/path fails if a cycle occurs along
one of the branches. Consequently, the configuration γ ⊕ (l, x) is not always defined, hence
the name defective dynamics.

In full analogy with the above definition of the⊕ operation, we can define the configura-
tion γ � (l, x) ∈ �D for line l extending an edge e ∈ Edges(γ ), γ ∈ �D, with x ∈ e, which
is to be interpreted as initiating the annihilation phase in γ from the linear germ (l, x) or,
in other words, killing/annihilating the field line l of γ at the point x. This operation also
gives rise to a disagreement loop and its outcome may be undefined as well, on equal rights
with �.

The operations ⊕(l, x) and �(l, x) combine the properties of line birth/death and vertex
birth/death operations of the generalized disagreement loop dynamics in Sect. 6.3 and there
are no separate ⊕l,⊕x,�l,�x operations in the defective dynamics.

Directly from the definition of the line creation operation ⊕ it follows that if for some
γ ∈ �D and a linear germ (l, x), x ∈ l \ γ, another configuration γ ′ ∈ �D is reachable from
γ upon adding the linear germ (l, x), that is to say γ ′ is a possible outcome for γ ⊕ (l, x),

then the probability element that γ ⊕ (l, x)= γ ′ is

exp(−LM(γ ′ \ γ ))
∏

e∈Edges(γ ′\γ ), e ��x
M(dl[e]), (19)

where Edges(γ ′ \ γ ) stands for the collection of edges of γ ′ which are not extensions of
edges of γ and thus they have to result from directional updates during creation phase.
Indeed, the product

∏
M(dl[e]) in (19) comes from the probability cost of creation phase

directional updates yielding all edges in Edges(γ ′ \ γ ) save the initial one germinating from
x, whereas exp(−LM(γ ′ \γ )) is due to the absence of directional updates along the created
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polygonal paths of γ ′ \γ. In a similar way we see that if for some (l, x) the configuration γ ∈
�D contains an edge e with x ∈ e and l = l[e] then for another configuration γ ′ reachable
from γ by annihilating the line l at x we have the probability element that γ � (l, x)= γ ′

given by

exp(−LM(γ ′ \ γ ))
∏

e∈Edges(γ ′\γ )

M(dl[e]). (20)

It is also crucial to observe that each valid transition γ → γ ′ = γ ⊕ (l, x) admits its in-
verse obtainable as γ ′ → γ = γ ′ � (l, x) under the same directional decisions made in the
course of the disagreement loop construction but with the creation and annihilation phases
switched—this is due to the fact that the directional decision rule φ(·, ·) only takes into ac-
count the current state of the unfolding disagreement loop (which is the same for γ → γ ′

and γ ′ → γ as the symmetric difference) rather than the actual configuration (which differs
for both transitions).

Consider now a measurable set AL ⊆ [[D]] and a measurable mapping A
∗ : AL→ D

such that A
∗(l) ∈ l. These are interpreted respectively as the set of lines allowed for cre-

ation/annihilation and the assignment to each line of its germination point. The mapping
A
∗ can also be randomized as long as it is kept independent of the dynamics below, but for

simplicity we do not discuss the details of this straightforward extension as it is not going to
be used in this paper. Define the following defective disagreement loop dynamics unfolding
in s-time:

(DefDL:birth) With intensity M(dl)ds for l ∈ AL set γs+ds := γs ⊕ (l,A
∗(l)). Should the

proposed update fail, keep γs+ds = γs.

(DefDL:death) For each line l ∈ AL extending an edge e of γs such that A
∗(l) ∈ e, with

intensity ds set γs+ds := γs � (l,A
∗(l)). Should the proposed update fail, keep γs+ds = γs.

Recalling the above transition probabilities (19) and (20) corresponding to ⊕ and � moves
and taking into account the discussion following their displays allows for a straightforward
verification of the detailed balance conditions which readily yields

Theorem 10 The distribution of the polygonal field AM
D is an invariant law for the dy-

namics given by DefDL:birth and DefDL:death. The resulting s-time stationary process is
reversible.

Note that in strong contrast to analogous Theorems 7 and 9 we do not state uniqueness or
convergence to the law of the polygonal field AM

D here and this is because in general neither
of them holds. Indeed, this is due to the fact that a defective dynamics does not have to be
transitive: there may exists pairs of admissible polygonal configurations which cannot be
reached from each other by ⊕ and � moves. This is closely related to the possible failures
of these updates and it is the price to pay for the free choice of the directional decision
mapping. The structure of the recurrent classes of defective dynamics on �D is a subject
of our research in progress. Observe as well that, in view of the discussion following the
displays (19) and (20), the requirement that the directional decision rule φ(·, ·) only depends
on the current state of the disagreement loop rather than on the entire actual configuration
seems indispensable for the detailed balance and the reversibility of the dynamics.

Variants and applications of the defective dynamics The modification DefDL[β] of the
defective disagreement loop dynamics DefDL for general β �= 1 is straightforward and goes
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by introducing suitable acceptance test for update proposals in full analogy with the corre-
sponding modification of the DL dynamics aimed at obtaining DL[β] in Sect. 6.2.

The class of possible directional decision rules is extremely rich and various strategies
can be chosen encompassing different goals. One possible option of constructing the di-
rectional decision mapping goes by choosing an arbitrary measurable generalized anchor
mapping A : [[D]]→D with A(l) ∈ l to be interpreted as the initial point of the line l. Then
the direction φ(λ, l) the disagreement loop λ is to assume for its unfolding along l upon a
directional update is always set away from the anchor point A(l). Note that if the anchor
mapping corresponds to an increasing family (Dt) of convex compacts satisfying (D1-5) as
in Sect. 4 then the resulting defective dynamics ⊕ and � operations coincide respectively
with the line birth and line death operations of the generalized disagreement loop dynamics
described in Sect. 6.3.

The directional decision mapping can also be randomized, as long as φ(λt , ·) is indepen-
dent of the current field configuration conditionally given λt . Such randomized strategies
will not be used in this paper though.

Due to its flexibility, we envision manifold applications of the defective dynamics in our
research in progress on polygonal fields. In the first place we are planning to use it to gain
further knowledge on the higher order correlation structure of consistent polygonal fields. To
illustrate the techniques we are currently developing we shall employ the defective dynamics
to establish exponential decay of correlations in the particular case of rectangular fields in
Sect. 7 below. Another important field in which we anticipate the use of this dynamics is
digital image segmentation—the defective dynamics will provide a rich and flexible class
of new Monte Carlo moves for polygonal field-based Bayesian segmentation algorithms we
developed in joint work with Kluszczyński and van Lieshout [10–12, 17].

7 Exponential Decay of Dependencies for Consistent Rectangular Fields

The purpose of this section is to make use of the defective disagreement loop dynamics
developed in Sect. 6.4 above in order to establish exponential decay of higher order cor-
relations for the consistent rectangular field AM. To simplify the presentation we assume
throughout this section with no loss of generality that the admissible directions l, l′ of the
field are parallel to the coordinate axes. Assume also that a collection (li , xi)

k
i=1, xi ∈ li ,

in general position as in Sect. 5 is given such that x1 is its topmost point with the highest
y coordinate. Further, let R[x2, . . . , xk] be the smallest rectangle with sides parallel to co-
ordinate axes containing all remaining points x2, . . . , xk of the considered collection. We
know from Lemma 3 that if l1 does not hit the convex hull of x2, . . . , xk then the corre-
lation function σM[l1, x1; l2, x2; . . . ; lk, xk] factorizes as σM[l1, x1]σM[l2, x2; . . . ; lk, xk].
Here in Lemma 4 we show that also when l1 does hit conv({x2, . . . , xk}) and hence it
also hits the rectangle R[x2, . . . , xk], the correlation σM[l1, x1; l2, x2; . . . ; lk, xk] approaches
σM[l1, x1]σM[l2, x2; . . . ; lk, xk] exponentially fast in the distance measure between x1 and
R[x2, . . . , xk] along l1.

Lemma 4 With notation as above, if l1 hits R[x2, . . . , xk] then we have

σM[l1, x1; l2, x2; . . . ; lk, xk] = σM[l1, x1]σM[l2, x2; . . . ; lk, xk]
× (

1+O
(
e−M([[l1[x1↔R[x2,...,xk ]]]]))),

where l1[x1↔R[x2, . . . , xk]] is the segment of l1 between x1 and R[x2, . . . , xk].
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Proof Our proof relies on estimating the conditional probability of the event

E[dl1, x1] := {∃e∈Edges(AM)x1 ∈ e, l[e] ∈ dl1}

given the event

E[dl2, x2; . . . ;dlk, xk] := {∀k
i=2∃e∈Edges(AM)xi ∈ e, l[e] ∈ dli}.

We shall show that

P(E[dl1, x1]|E[dl2, x2; . . . ;dlk, xk])=M(dl1)
(
1+O

(
e−M([[l1[x1↔R[x2,...,xk ]]]]))), (21)

which will complete the proof in view of (10) (recall that xi ∈ li , i = 1, . . . , k) and The-
orem 4. To proceed, denote by ÃM a rectangular field coinciding in law with AM condi-
tioned on the event E[dl2, x2; . . . ;dlk, xk]. Note that since l1 crosses R[x2, . . . , xk], it has to
be a vertical line. Construct the following directional decision rule φ(·, ·) for the defective
dynamics:

• Whenever turning into a horizontal direction, move away from l1, that is to say rightwards
if the turning point lies to the right from l1 and leftwards if the turning point lies to the
left of l1. When the turning point lies on l1, move rightwards.
• Whenever turning into a vertical direction, move upwards.

Moreover, let D :=R[x1, x2, . . . , xk], that is to say D is the smallest rectangle with sides
parallel to coordinate axes, spanned by x1, . . . , xk. Furthermore, set AL to be the family
of all vertical lines in [[D]] and for each l ∈ AL = [[D]] let A

∗(l) be the topmost point
of l ∩D so that in particular A

∗(l1) = x1. With this notation, using Theorem 10 including
the reversibility statement there we see that the law of the conditional field ÃM

D is invari-
ant and reversible for the following conditional version of the defective disagreement loop
dynamics:

• With intensity M(dl)ds for l ∈ AL set γs+ds := γs ⊕ (l,A
∗(l)). Should the proposed

update fail or result in a configuration violating E[dl2, x2; . . . ;dlk, xk], keep γs+ds = γs.

• For each line l ∈ AL extending an edge e of γs such that A
∗(l) ∈ e, with intensity ds

set γs+ds := γs � (l,A
∗(l)). Should the proposed update fail or result in a configuration

violating E[dl2, x2; . . . ;dlk, xk], keep γs+ds = γs.

Note that the only difference compared to the DefDL dynamics in Sect. 6.4 is that we discard
updates resulting in violation of E[dl2, x2; . . . ;dlk, xk]. Observe also that

• Under the so-defined directional decision rules the disagreement loops arising in the
course of the dynamics are always single-branched (the second branch is chopped off
by the boundary of D) and contain no cycles so that the updates in the above dy-
namics never fail (but note that they can nevertheless be discarded whenever violating
E[dl2, x2; . . . ;dlk, xk]).
• The only update of the dynamics which can lead to a transition from a configuration where

E[dl1, x1] holds to a configuration where it does not hold is �(l1, x1). Indeed, in view of
the directional decision rules, even if some disagreement loop annihilates a subsegment
of l1, this subsegment cannot reach x1.

• Likewise, the only update of the dynamics which can lead to a transition from a configu-
ration where E[dl1, x1] does not hold to a configuration where it holds is ⊕(l1, x1).
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• For the update ⊕(l1, x1) the only possibility to cause violation of E[dl2, x2; . . . ;dlk, xk],
and thus to be discarded, is that the initial downwards creation phase growth of the dis-
agreement loop from x1 continue with no directional updates along l1 until the loop
reaches R[x2, . . . , xk]. Indeed, if a directional update occured prior to that, the dis-
agreement loop would only unfold upwards and rightwards thereafter, never reach-
ing R[x2, . . . , xk] and consequently not violating E[dl2, x2; . . . ;dlk, xk]. However, the
probability that the initial segment of the disagreement loop for ⊕(x1, l1) extends
all the way down to R[x2, . . . , xk] without directional updates is exp(−M([[l1[x1 ↔
R[x2, . . . , xk]]]])) by the definition of the dynamics. Clearly, even if this happens, the
violation of E[dl2, x2; . . . ;dlk, xk] is not guaranteed, but possible.
• Likewise, the update �(l1, x1), only possible on the event E[dl1, x1], may only cause

violation of E[dl2, x2; . . . ;dlk, xk] if the current configuration γs contains a segment along
l1 joining x1 to R[x2, . . . , xk]. On the event E[dl1, x1] ∩ E[dl2, x2; . . . ;dlk, xk] this only
happens with probability O(exp(−M([[l1[x1 ↔ R[x2, . . . , xk]]]]))) though, in analogy
to the previous case.

In view of these observations and by the definition of the dynamics we see that in its course:

• On ¬E[dl1, x1], transitions leading to E[dl1, x1] occur in s-time with intensity

M(dl1)ds
(
1+O

(
e−M([[l1[x1↔R[x2,...,xk ]]]]))).

• On E[dl1, x1], transitions leading to ¬E[dl1, x1] occur in s-time with intensity

ds
(
1+O

(
e−M([[l1[x1↔R[x2,...,xk ]]]]))).

Consequently, using the detailed balance we see that the probability of E[dl1, x1] for ÃM,

or equivalently the conditional probability of E[dl1, x1] given E[dl2, x2; . . . ;dlk, xk], is

M(dl1)
(
1+O

(
e−M([[l1[x1↔R[x2,...,xk ]]]])))

as required for (21). This completes the proof of the lemma. �

A repetitive use of Lemma 4 readily yields the following approximate factorization the-
orem.

Theorem 11 Assume the collection (li , xi)
k
i=1 is such that xi �∈R[xi+1, . . . , xk] for all i and

let δi :=M[[li[xi ↔R[xi+1, . . . , xk]]]] if li hits R[xi+1, . . . , xk] and δi := +∞ otherwise.
Then

σM[dl1, x1; . . . ;dlk, xk] =
(

k∏

i=1

M(dli)

)
k∏

i=1

(1+O(exp(−δi))).

8 Contour Birth and Death Dynamics

The purpose of the present section is to describe an alternative dynamics which can be used
to simulate the empty-boundary field AM;β

D|∅ for β ≥ 2. A particular feature of this dynamics
is that it yields a perfect sampler, i.e. the sample it outputs comes exactly from the target
distribution and not just its approximation. Moreover, for β large enough it extends to the
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whole plane thus allowing for a direct graphical construction (perfect simulation) of the
whole plane thermodynamic limit AM;β . The idea underlying the graphical representation
comes from Fernández, Ferrari and Garcia [7–9] and in the context of homogeneous polyg-
onal fields it has been developed in Schreiber [15, 16]. Here we present an extension of the
construction to the general non-homogeneous setting. Our presentation splits into several
steps.

8.1 Free Contour Measure

Choose an open bounded set D with piecewise smooth boundary and consider the space CD

consisting of all closed polygonal contours in D which do not touch the boundary ∂D. For
a given finite collection (l) := (l1, . . . , ln) of straight lines intersecting D denote by CD(l)

the family of those polygonal contours in CD which belong to �D|∅(l) := �D(l) ∩ �D|∅. We
define the so-called free contour measure �D on CD by putting for C ⊆ CD measurable, say
with respect to the Borel σ -field generated by the Hausdorff distance topology,

�D(C)=
∫

Fin(L[D])

∑

θ∈C∩CD(l)

exp(−LM(θ))dM∗((l)) (22)

with Fin(L[D]) standing for the for the family of finite collections of lines intersecting D

and where M∗ is the measure on Fin(L[D]) given by dM∗((l1, . . . , ln)) :=∏n

i=1 M(dli).

Thus, in other words,

�D(dθ)= exp(−LM(θ))
∏

e∈Edges(θ)

M(dl[e]).

For general β ∈R we consider the exponential modification �
[β]
D of the free measure �D,

�
[β]
D (dθ) := exp(−[β − 1]LM(θ))�D(dθ)= exp(−βLM(θ))

∏

e∈Edges(θ)

M(dl[e]). (23)

It is easily seen that the total mass �
[β]
D (CD) is always finite for bounded D for all β ∈ R.

Indeed, taking into account that LM(θ)≤ card(Edges(θ))M([[D]]) we have in view of (23)

�
[β]
D (CD) ≤

∞∑

k=0

1

k! [M([[D]])]k exp(|β|kM([[D]]))

= exp(M([[D]]) exp(|β|M([[D]]))) <∞. (24)

Note that for all D the free contour measures �D as defined in (22) arise as the respective
restrictions to CD of the same measure � on C :=⋃∞

n=1 C(−n,n)2 , in the sequel referred to
as the infinite volume free contour measure. Indeed, this follows easily by the observation
that �D1 restricted to CD2 coincides with �D2 for D2 ⊆D1. In the same way we construct
the infinite-volume exponentially modified measures �[β], β ∈R. It turns out that for β ≥ 2
a natural algorithmic random walk representation of �[β] can be given. This is done as
follows. For each contour θ ∈ C let ι[θ ] be its leftmost vertex, that is to say its extreme left
point minimizing the first coordinate, with possible ties broken in an arbitrary measurable
way. Next, for x ∈ R

2 denote by Cx the collection of contours θ ∈ C such that ι[θ ] = x. For
β ≥ 2 let �[β]x be the subprobability measure determined by the following construction of a
Cx -valued �[β]x -distributed random element θ
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• Simulate a continuous-time random walk (Zt )t≥0 gouverned by the following dynamics
– choose two random lines l1, l2 meeting at x according to the distribution

d[M×M]((l1, l2), l1 ∩ l2 ∈ dx)

2〈〈M〉〉(dx)
,

as in (7),
– put Z0 := 0 and choose one of two possible initial directions along l1 with equal prob-

abilities 1/2,

– between direction update events specified below move in a constant direction with
speed 1,

– while moving along the segment Z[t,t+dt] = ZtZt+dt , update the movement direc-
tion and start moving along a line l ∈ [[Z[t,t+dt]]] with probability 2M(dl) and with
equiprobable choices between the two possible directions along l,

• Consider a killed modification Z̃
[β−2]
t of Zt by killing Zt

– with intensity [β − 2]M([[Z[t,t+dt]]]),
– whenever Zt hits its past trajectory,
• Draw an infinite loop-closing half-line l∗ along l2 beginning at x with equiprobable

choices of two possible directions,
• If the random walk Z̃

[β−2]
t hits the loop closing line l∗ before getting killed, and the self-

avoiding contour θ∗ := θ∗[Z̃[β−2]; l∗] created by l∗ and the trajectory of Z̃
[β−2]
t up to the

moment of hitting l∗ satisfies ι[θ∗] = x, then
– with probability exp(−βM([[e∗]])) output θ := θ∗, where e∗ stands for the segment of

the loop closing line l∗ from x to its intersection point with Z̃
[β−2]
t ,

– otherwise output θ := ∅.
In all remaining cases set θ := ∅.

Note that outputting ∅ means failing in the above algorithm, and hence the resulting distri-
bution is a sub-probability rather than probability measure.

The following lemma provides a constructive representation for �[β], β ≥ 2, and is close
in spirit to Lemma 5.1 in [16] and Lemma 1 in [12].

Lemma 5 For β ≥ 2 we have

�[β] = 4
∫

R2
�[β]x 〈〈M〉〉(dx).

Proof The directed nature of the random walk trajectories as constructed above requires
considering for each contour θ two oriented instances θ→ (clockwise) and θ← (anti-
clockwise). By the construction of �[β]x the assertion of the lemma will follow as soon as we
show that for each x ∈R

2 and θ ∈ Cx we have

8〈〈M〉〉(dx) e−βLM(e∗)
P
(
Z̃
[β−2]
t reaches l∗ and θ∗[Z̃[β−2]; l∗] ∈ dθ→

)=�[β](dθ), (25)

where e∗ stands for the last segment of θ→ counting from x as the initial vertex, which is to
coincide with the segment of the loop-closing line l∗ joining to x its intersection point with
Z̃
[β−2]
t ; whereas θ∗[Z̃[β−2]; l∗] is the self-avoiding contour created by l∗ and the trajectory of

Z̃
[β−2]
t up to the moment of hitting l∗, as denoted in the construction of �[β]x above. Indeed,

the same relation holds then for θ←, so adding versions of (25) for θ→ and θ←, which
amounts to taking into account two possible directions in which the random walk can move
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along θ, will yield 2�[β](dθ) on the right hand side, whence the assertion of the lemma will
follow.

To establish (25), we observe that the probability element

P
(
Z̃
[β−2]
t reaches l∗ and θ∗[Z̃[β−2]; l∗] ∈ dθ→

)

is exactly

1

8〈〈M〉〉(dx)
exp

(−βLM(θ \ e∗)
) k∏

i=1

M(dl[ek]), (26)

where e1, . . . , ek are all segments of θ including e∗ = ek, while l[ei] stands for the straight
line determined by ei . Indeed,

• the prefactor [8〈〈M〉〉(dx)]−1 = [4[M×M]({(l1, l2) | l1∩ l2 ∈ dx})]−1 times the product
M(dl[e1])M(dl[ek]) comes from the choice of the lines l1 and l2 containing respectively
the initial segment of θ→ (counting from x) and the half-line l∗, as well as from the choice
between two equiprobable directions on each of these lines,
• for each of the remaining segments ei, i = 2, . . . , k−1, the factor M(dl[ei]) comes from

the directional update of the random walk Zt, with 2M(dl[ei]) due to the choice of the
line and 1/2 due to the choice between two equiprobable directions along this line,
• finally, exp(−[β − 2]LM(θ \ e∗)) comes from killing in the course of the random walk

whereas extra exp(−2LM(θ \ e∗)) is due to the absence of directional updates along the
segments of the walk, which yields exp(−βLM(θ \ e∗)) when put together.

Recalling (23) we see that the expression in (26) coincides with

1

8〈〈M〉〉(dx)
exp(βLM(e∗))�[β](dθ),

which yields the required relation (25). The proof is complete. �

To proceed, assume that the activity measure M admits a homogeneous upper and lower
bound, that is to say

C−μ≤M≤ C+μ (27)

for some 0 < C− ≤ C+ <∞ and with μ standing for the standard isometry-invariant Haar-
Lebesgue measure on the space [[R2]] of straight lines in R

2. Recall that one possible con-
struction of μ goes by identifying a straight line l with the pair (φ,ρ) ∈ [0,π)×R, where
(ρ sin(φ), ρ cos(φ)) is the vector orthogonal to l, and joining it to the origin, and then by
endowing the parameter space [0,π)×R with the usual Lebesgue measure. Then, for each
linear segment e we have by standard integral geometry

2C−�(e)≤M([[e]])≤ 2C+�(e) (28)

because μ([[e]])= 2�(e). Likewise, since 〈〈μ〉〉(dx)= πdx as easily checked by straight-
forward integration,

C−πdx ≤ 〈〈M〉〉(dx)≤ C+πdx. (29)

Consequently, we conclude from Lemma 5 that under �[β], β ≥ 2, the contour size exhibits
exponentially decaying tails, which is a non-homogeneous counterpart of Lemma 1 in [15].
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Lemma 6 Under the assumption (27), for β ≥ 2 we have

�[β]({θ;dx ∩Vertices(θ) �= ∅, �(θ) > R})≤ 4C+π exp(−2C−[β − 2]R)dx,

where the event {dx ∩Vertices(θ) �= ∅} is to be understood that a vertex of θ falls into dx.

Moreover, there exists a constant ε > 0 such that, for β ≥ 2,

�[β]({θ;0 ∈ Int θ, �(θ) > R})≤ exp(−2C−[β − 2+ ε]R+ o(R)),

with Int θ standing for the region enclosed by the contour θ.

Proof The first assertion follows by the construction of the random walk Zt where, in
view of (28), the killing intensity is at least 2C− times the length element covered under
the present assumptions, whereas the extreme left vertices of contours have their intensity
bounded by 4〈〈M〉〉(dx)≤ 4C+π in view of the integral formula in Theorem 5 and of (29).
To get the second assertion observe in addition that during each unit time of its evolution the
random walk Zt has some uniformly non-zero chance of hitting its past trajectory, see also
the proof of Lemma 1 in [15]. �

8.2 Polymer Representation

To proceed we let P
�
[β]
D

be the Poisson point process in CD with intensity measure �
[β]
D .

It follows then directly by (23) in view of (2) and (3) that, for all β ∈ R, AM;β
D|∅ coincides

in distribution with the union of contours in P
�
[β]
D

conditioned on the event that they are

disjoint so that

L
(
AM;β

D|∅
)= L

(
⋃

θ∈P
�
[β]
D

θ

∣
∣
∣∀θ,θ ′∈P

�
[β]
D

θ �= θ ′ ⇒ θ ∩ θ ′ = ∅
)

, (30)

where the conditioning makes sense because �
[β]
D (CD) is finite as shown in (24) above, see

also [15], Sect. 2.2. In particular, in analogy to Sect. 2.2 and Theorem 2 ibidem, the law
of AM;β

D|∅ is invariant and reversible with respect to the following contour birth and death
dynamics (γ D

s ) on �D.

(C:birth[β]) With intensity �
[β]
D (dθ)ds do

• Choose a new contour θ,

• If θ ∩ γ D
s = ∅, accept θ and set γ D

s+ds := γ D
s ∪ θ,

• Otherwise reject θ and keep γ D
s+ds := γ D

s ,

(C:death[β]) With intensity 1 ·ds for each contour θ ∈ γ D
s remove θ from γ D

s setting γ D
s :=

γ D
s \ θ.

Moreover, L(AM;β
D ) is the unique invariant distribution of the above dynamics, see Theo-

rem 2 in [15]. Clearly, both the representation (30) and the above dynamics can be regarded
as a kind of polymer representation for AM;β

D .

Unlike the results for free contour measures, the polymer representation is valid for all
values of β. In this context it is helpful to note that, by (30), the probability P(AM;β

D|∅ = ∅)
is not smaller than exp(−�

[β]
D (CD)). On the other hand, comparing with (2) shows that
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P(AM;β
D|∅ = ∅) is [ZM;β

D|∅ ]−1 where, recall, ZM;β
D|∅ is the partition function for AM

D|∅. Thus, by
(24),

ZM;β
D|∅ ≤ exp(�[β](CD)) <∞. (31)

Likewise,

ZM;β
D <∞ (32)

which can be proven along the same lines, see also the proof of Corollary 2 in [15].

8.3 Graphical Representation

These observations place us within the framework of the general contour birth and death
graphical construction as developed by Fernández, Ferrari and Garcia [7–9] and as sketched
below, see ibidem and [15] for further details. Choose β large enough, to be specified below.
Define F(C) to be the space of countable and locally finite collections of contours from C,

with the local finiteness requirement meaning that at most a finite number of contours can hit
a bounded subset of R

2. On the time-space R×F(C) we construct the time-stationary free
contour birth and death process (�s)s∈R with the birth intensity measure given by �[β] and
with the death intensity 1. Note that free means here that every new-born contour is accepted
regardless of whether it hits the union of already existing contours or not, moreover we admit
negative time here, letting s range through R rather than just R+. Observe also that we need
the birth measure �[β] to be finite on the sets {θ ∈ C | θ ∩ A �= ∅} for all bounded Borel
A⊆R

2 in order to have the process (�s)s∈R well defined on R×F(C). By Lemma 6 this is
ensured whenever β ≥ 2. To proceed, for the free process (�s)s∈R we perform the following
trimming procedure. We place a directed connection from each time-space instance of a
contour showing up in (�s)s∈R and denoted by θ × [s0, s1), with θ standing for the contour
and [s0, s1) for its lifespan, to all time-space contour instances θ ′ × [s ′0, s ′1) with θ ′ ∩ θ �=
∅, s ′0 ≤ s0 and s ′1 > s0. In other words, we connect θ × [s0, s1) to its ancestors understood
as those contour instances which may have affected the acceptance status of θ × [s0, s1) in
the constrained contour birth and death dynamics (C) as discussed above. These directed
connections give rise to directed ancestor chains of time-space contour instances, following
Fernandez, Ferrari and Garcia [9] the union of all ancestor chains stemming from a given
contour instance θ∗ = θ × [s0, s1), including the instance itself, is referred to as its clan of
ancestors and is denoted by An(θ∗). More generally, for a bounded region U in the plane
we write Ans(U) for the union of ancestor clans of all contour instances θ × [s0, s1) with
θ ∩ U �= ∅ and s ∈ [s0, s1). Lemma 6 allows us to apply the technique of domination by
sub-critical branching processes, developed in [7–9], in order to conclude that there exists
βg such that for each β > βg there exists c := c(β) > 0 such that

P(diam Ans(B2(x,1)) > R)≤ exp(−cR), s ∈R, x ∈R
2, (33)

with B2(x,1) standing for the ball of radius 1 in R
2 centred at x. In the sequel we shall

always assume that β > βg, that is to say that β is in the validity region of the graphical
construction. We see that for β > βg all the ancestor clans are a.s. finite and we can uniquely
determine the acceptance status of all their members: contour instances with no ancestors
are a.s. accepted, which automatically and uniquely determines the acceptance status of all
the remaining members of the clan by recursive application of the inter-contour exclusion
rule. In this case, discarding the unaccepted contour instances leaves us with a time-space
representation of a time-stationary evolution (γs)s∈R on F(C), which is easily checked to
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evolve according to the whole-plane version of the dynamics (C) above. In full analogy with
Sect. 4 and Theorem 4 of [15] we see that for all s ∈ R the polygonal field γs coincides in
distribution with the thermodynamic limit (see Sect. 3 ibidem) for AM;β without infinite
contours, which is unique (see Corollary 4 ibidem). For definiteness we put AM;β := γ0. It
should be also observed that for each s ∈R the free field �s coincides in distribution with the
Poisson contour process P�[β] . Since almost surely we have γs ⊆ �s, we get the stochastic
domination of the contour ensemble AM;β by P�[β] . Moreover, using the exponential decay
relation (33), in full analogy with Theorem 4 (iv, v) we readily establish the following β-
mixing statement for AM;β .

Corollary 5 For β > βg there exists c > 0 such that for each A,B ⊆ R
2 the law of the

restriction AM;β
|A∪B of the thermodynamic limit AM;β to A ∪ B differs in variational dis-

tance from the product of the laws of the respective restrictions AM;β
|A , AM;β

|B by at most
O(cover(A)cover(B) exp(−c dist(A,B))), where cover(X) stands for the minimum num-
ber of unit balls covering X ⊆R

2 whereas dist(A,B) := infx∈A,y∈B dist(x, y).

Indeed, this is easily checked by noting that the considered variational distance is
bounded above by the probability that either An0(A) extends further than dist(A,B)/2 away
from A or An0(B) extends further than dist(A,B)/2 away from B which happens with
probability at most O(cover(A)cover(B) exp(−c dist(A,B))) as required. Furthermore, in
analogy to the discussion following Corollary 4 in [15] we can use the stochastic domination
of AM;β by P�[β] and apply Lemma 6 to conclude that

Corollary 6 With probability 1 there is only finite contour nesting in AM;β, that is to say
no infinite chains of nested contours are present.

Indeed, this comes from the fact that the expected number of contours surrounding a
given point is always finite by Lemma 6. In addition, for β large enough this expected
number can be made arbitrarily small, which clearly guarantees the presence of long-range
point-to-point correlations and spontaneous magnetization with contours interpreted as sep-
arating phases of different signs, as follows by a standard Peierls-type argument.

We also consider finite-volume versions of the above graphical construction, replacing
the infinite-volume birth intensity measure �[β] with its finite-volume counterparts �

[β]
D for

bounded and open D with piecewise smooth boundary. Clearly, the graphical construction
yields then a version of the finite-volume contour birth and death evolution (C). For each D

denote by (γ D
s )s∈R the resulting finite-volume time-stationary process on the space F(CD)

of finite contour configurations in D and write (�D
s )s∈R for the corresponding free process. It

follows as in Theorem 2 in [15] that γ D
s coincides in distribution with AM;β

D for each s ∈R.

Likewise, �D
s coincides in distribution with P

�
[β]
D

.

By representing the measures �
[β]
D as the corresponding restrictions of �[β] we obtain a

natural coupling of all the processes γ D
s , �D

s , γs and �s on a common probability space. We
shall also consider AM;β

D coupled on the same probability space by putting AM;β
D = γ D

0 .

Under this coupling we have the following corollary stating exponential convergence of
AM;β

D to AM;β as D ↑R
2.

Corollary 7 Assume that β is within the validity regime of the contour birth and death
graphical construction. Then for x ∈D such that B(x,1)⊆D we have

P
([AM;β ]|B2(x,1) �= [AM;β

D ]|B2(x,1)

)≤ exp(−c[dist(x, ∂D)− 1]),
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with c as in (33) and with | standing for the restriction operator.

Indeed, this follows easily by (33) upon noting that the event {[AM;β ]|B2(x,1) �=
[AM;β

D ]|B2(x,1)} only occurs when An0(B2(x,1)) �⊆D.
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